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Abstract
Some finite and symmetric two-player games have no (pure ormixed) symmetric Nash
equilibrium when played by partly morally motivated players.The reason is that the
“right thing to do”may be not to randomize.We analyze this issue both under complete
information between equallymoral players and under incomplete information between
players of arbitrary degrees ofmorality.Weprovide necessary and sufficient conditions
for the existence of equilibrium and illustrate the results with examples and counter
examples.
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1 Introduction

In economics and non-cooperative game theory, economic agents and players are
usually assumed to be pure consequentialists, that is, to evaluate their alternative
courses of action (consumption or production plans, strategies) exclusively in terms
of the consequence for themselves and perhaps also for others. However, people may
to some extent also be driven by deontological motivations, such as a wish to “do the
right thing” in the given situation. Such a participant in a public goods game may, for
example, contribute the amount that would maximize the group’s welfare if everybody
would do likewise, in line with Immanuel Kant’s (1785) categorical imperative, to “act
only on the maxim that you would at the same time will to be a universal law.”
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In standard public goods games such partly morally motivated individuals may be
behaviorally indistinguishable from altruists, individuals who are pure consequential-
ists butwhoattach apositive value to other’swell-being.However, in other interactions,
a Kantian moralist may behave quite differently from an altruist. Take a 2 × 2 coor-
dination game, where both players obtain payoff 1 if both use their first pure strategy,
2 if both use their second pure strategy, and otherwise zero. An altruist who expects
the opponent to play the first pure strategy will do likewise. By contrast, a Kantian
moralist may instead use the second pure strategy. This will result in material payoff
zero to both, but the moralist may obtain psychological utility from behaving in a
way he/she wishes all would in such interactions. If two stern moralists would play
the coordination game, they would do just fine. However, in some games moralists of
intermediate degree, known by both, may not even have a Nash equilibrium, and this
may also be the case when player’s degree of morality is their private information.

We here explore exactly these questions, more precisely whether symmetric Nash
equilibria exist in symmetric and finite games played by partlymorallymotivated play-
ers. As a formal representation of such players we use the Homo moralis preferences
that Alger and Weibull (2013) showed are evolutionarily stable in populations under
assortative random matching.1 We establish the existence of symmetric Nash equilib-
ria for certain game classes, when played by such players, andwe also give examples of
simple games with no such equilibria. Theorem 1 and Proposition 6 together establish
necessary and sufficient conditions for the existence of symmetric Nash equilibrium
between partly morally motivated players under incomplete information about others’
degree of morality.

2 Definitions and preliminaries

In this note we consider finite and symmetric games. Let S = {1, . . . ,m} be the set
of pure strategies, and let Δ be the associated unit simplex of mixed strategies,

Δ =
{
x ∈ R

m+ : eT x =
m∑
i=1

xi = 1

}
.

Here e = ∑m
i=1 ei , where ei is the i

th unity (column) vector, and the superscript T
denotes transpose. We write o for the zero vector (the origin).

Let A be an m ×m-matrix with “material” payoffs, let θ ∈ [0, 1] be a player type,
and consider the associated payoff function uθ : Δ2 → R, defined by

uθ (x, y) = (1 − θ) xT Ay + θ · xT Ax, (1)

1 The idea that moral values may have been formed by evolutionary forces can be traced back to at least
Darwin (1871). More recent treatments include Alexander (1987), de Waal (2006), and Bergstrom (1995,
2009).
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where x and y are (column) vectors in Δ. The parameter θ is the degree of morality of
Homo moralis, with θ = 0 representing pure self-interest, orHomo oeconomicus, and
θ = 1 representing pure (Kantian) morality, or Homo kantiensis (Alger and Weibull
2013). Thus uθ (x, y) is the payoff (or utility) to a player with degree of morality θ

when using strategy x against an opponent using strategy y in a symmetric game with
(material) payoff matrix A. The game being symmetric, B = AT is the matrix of
material payoffs to the column player.

For a given matrix A and degree of morality θ ∈ [0, 1] , let βθ : Δ ⇒ Δ be the
best-reply correspondence of Homo moralis of degree θ :

βθ (y) = argmax
x∈Δ

uθ (x, y) ∀y ∈ Δ.

Hence, a rational player with Homo moralis preferences of type θ will use some
strategy x in the subset βθ (y) if expecting the other player to use mixed strategy
y ∈ Δ . By Weierstrass’ maximum theorem, βθ (y) is a non-empty and compact set
for every θ ∈ [0, 1] and y ∈ Δ. However, as will be seen shortly, this set is not always
convex. We will study the existence and nature of fixed points under βθ , that is points
x ∈ Δ such that x ∈ βθ (x). These are then the symmetric Nash equilibria when two
Homines morales of the same degree of morality meet.

By Berge’s maximum theorem, βθ is upper hemi-continuous (with respect to y and
θ ). For θ = 0 the correspondence β0 is convex-valued. In fact, all its values are then
sub-simplices, non-empty subsets of Δ spanned by finitely many vertices. This is the
standard setting of non-cooperative game theory, and as is well known, there exists at
least one fixed point whenever θ = 0 . Likewise, for θ = 1 there is always a symmetric
Nash equilibrium, namely (x, x) for any x in the non-empty set argmaxx∈Δ xT Ax .

Remark 1 For any given material payoff matrix A, and any sequence 〈θt 〉 → 0, for
each t ∈ N suppose that

(
x (t), x (t)

)
is a Nash equilibrium between two Homines

morales of degree of morality θt > 0. The set Δ2 being compact, this equilibrium
sequence contains a convergent subsequence. By upper hemi-continuity of βθ , the
limit point, (x∗, x∗) is a Nash equilibrium when θ = 0. Hence, the requirement of
robustness with respect to a small degree of morality constitutes a refinement of Nash
equilibrium in standard game theory, see Example 1.

3 Games between equally moral players

The analysis in this section generalizes results for symmetric 2 × 2 games in Sect. 4
of Alger and Weibull (2013). We here consider strategic interactions under complete
information between two equally moral players who play a symmetric m × m game
in material payoffs, for any m ∈ N. If players are only interested in their own material
payoff, θ = 0, then the best-reply correspondence is convex-valued, and a symmetric
Nash equilibrium exists by standard arguments. However, as is illustrated in the fol-
lowing 2× 2 example, the correspondence βθ need not be convex-valued for positive
degrees of morality.
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Example 1 Consider the coordination game

A =
(
a 0
0 b

)

for a > b > 0. For θ = 0, there are three fixed points; the two unit vectors, e1 and e2,
and the mixed strategy

x∗ =
(
b/ (a + b)
a/ (a + b)

)
.

Note that xT Ax = ax21 + bx22 for all x ∈ R
2. Hence, this term is strictly convex in x ,

and so is also uθ (x, y) , for any given θ > 0 and y ∈ Δ. Therefore, βθ (y) ⊆ {e1, e2}.
It is immediate that e1 ∈ βθ (e1) for all θ ∈ [0, 1], and e2 ∈ βθ (e2) iff θ ≤ b/a. So
both e1 and e2 are fixed points for all 0 ≤ θ ≤ b/a, and there is only one fixed point
for every θ > b/a. For θ = b/a, βθ (e2) is a binary set. For all other values of θ , both
βθ (e1) and βθ (e2) are singletons. In sum, x∗ is a fixed point only when θ = 0, e1 is
always a fixed point, and e2 is a fixed point iff θ ≤ b/a. In particular, each of the pure
equilibria is robust to a small degree of morality, but the mixed equilibrium is not.

Since B = AT is the payoff matrix of the column player,

W (x) = xT
(
A + AT

)
x = 2xT Ax

is welfare, defined as the sum of the two players’ material payoffs when both use
strategy x ∈ Δ. This defines the welfare function W : Δ → R. Accordingly, the
payoff function of a Homo moralis with degree of morality θ can be written in the
form

uθ (x, y) = (1 − θ) xT Ay + θ

2
· W (x) .

Hence, if W is concave, then uθ (x, y) is concave in x ∈ Δ, for every y ∈ Δ, so the
existence of Nash equilibrium then follows immediately from Kakutani’s fixed point
theorem.

Proposition 1 The set of fixed points is non-empty and compact if θ ∈ {0, 1}. The same
is true for every θ > 0 if W is concave.

Clearly, a sufficient condition for W to be concave is that the symmetric matrix
A + AT is negative semidefinite. See Proposition 4 for a more general result. In the
following example, moral players, irrespective of how weak their morality is (as long
as θ is positive), have strict preferences among mixed strategies, something that is
never the case when players lack morality (θ = 0).

Example 2 Consider the Hawk–Dove game

A =
(
0 a
b 0

)

for a, b > 0. Then A + AT is indefinite: xT
(
A + AT

)
x = 2(a + b)x1x2 for any

x ∈ R
2. However, W is concave on Δ: there W (x) = 2 (a + b) x1(1 − x1). Hence,
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there exists at least one fixed point. From strict concavity of W we know that the sets
βθ (y) are singletons for all y ∈ Δ and θ > 0. Using first-order conditions, expressed
in x1 only (with x2 = 1 − x1), we conclude

e1 ∈ βθ (y) ⇐⇒ d

dx1
uθ (x, y)|x=e1 ≥ 0 ⇐⇒ y ∈ Δ1,

where Δ1 = {y ∈ Δ : (1 − θ) [a − (a + b)y1] ≥ θ(a + b)}, and likewise

e2 ∈ βθ (y) ⇐⇒ d

dx1
uθ (x, y)|x=e2 ≤ 0 ⇐⇒ y ∈ Δ2,

where Δ2 = {y ∈ Δ : (1 − θ) [a − (a + b)y1] ≤ −θ(a + b)}. Finally, for all
y ∈ Δ \ (Δ1 ∪ Δ2), we have βθ (y) = {x}, where

x1 = 1

2
+ 1 − θ

2θ
· a − (a + b)y1

a + b
∈ (0, 1) . (2)

Since e1 /∈ Δ1 and e2 /∈ Δ2 for all θ ∈ [0, 1], neither e1 nor e2 can be fixed points
for any θ . All fixed points (and we know at least one exists) are thus found by solving
y1 = x1 with x1 given by the necessary first-order condition (2). This leads to exactly
one fixed point for every θ ∈ (0, 1], namely

x =
(

a + θb

(1 + θ)(a + b)
,

θa + b

(1 + θ)(a + b)

)T

In particular, x1 = a/(a+b) defines the unique fixed point when θ = 0, and x1 = 1/2
the unique fixed point when θ = 1. In this example, the unique symmetric equilibrium
is robust to a small degree of morality.

A game-theoretically important class of games in which W is concave on Δ are all
constant-sum games (then A + AT is a matrix with identical entries), with zero-sum
games as the most prominent special case.

Proposition 2 Let A be the payoff matrix of a symmetric constant-sum game. For any
θ < 1, the set of fixed points is identical with the non-empty set of fixed points when
θ = 0, while every x ∈ Δ is a fixed point when θ = 1.

In other words, all Homines morales, except Homo kantiensis, behave like Homo
oeconomicus in all (finite and symmetric two-player) constant-sum games.

The remaining situation to investigate is thus when θ > 0 and W is not concave
(as in Example 1). We begin with an example showing that existence of a symmetric
Nash equilibrium cannot be taken for granted.

Example 3 Consider the generalized Rock–Scissors–Paper (RSP) game matrix

A =
⎛
⎝ 1 2 + a 0

0 1 2 + a
2 + a 0 1

⎞
⎠
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for any a > −1. We note that this is a constant-sum game if and only if a = 0. For
θ = 0, the unique symmetric Nash equilibrium strategy is the barycenter xo. As is
well known, this unique equilibrium is unstable in the replicator dynamic for all a < 0
and asymptotically stable for all a > 0. 2 The function W is strictly concave if a > 0
and strictly convex if a < 0, because for any x ∈ Δ:

W (x) = 2 + a ·
(
1 − ‖x‖2

)
.

Henceforth, assume a < 0, fix 0 < θ < 1 and observe that ∅ �= βθ (y) ⊆
{e1, e2, e3} for all y ∈ Δ. Moreover, uθ (ei , ei ) = 1 for all i ∈ S, while

uθ (e1, e2) = uθ (e2, e3) = uθ (e3, e1) = (1 − θ) (2 + a) + θ.

Hence, uθ (e1, e2) > uθ (ei , ei ) iff (1 − θ) (1 + a) > 0, so for −1 < a < 0 no vertex
ei is a fixed point for any θ ∈ (0, 1). Consequently, there exists no fixed point for
0 < θ < 1 in generalized RSP games with values of a in this interval. In sum, in these
games, when −1 < a < 0, there is no symmetric Nash equilibrium at any degree of
morality θ between pure self-interest (θ = 0) and pure Kantian morality (θ = 1).

Proposition 1 ensures existence of at least one fixed point if the welfare functionW
is concave onΔ. If thewelfare function instead is strictly convex, then fixed pointsmay
not exist. The next result provides necessary and sufficient conditions for existence in
the latter case.

Proposition 3 If W is strictly convex on Δ, then βθ (y) ⊆ {e1, . . . , em} for all y ∈ Δ

and θ > 0, and ei is a fixed point under βθ if and only if

aii ≥ θakk + (1 − θ) aki ∀k ∈ S. (3)

In turn, (3) is satisfied for all small θ if (ei , ei ) is a strict Nash equilibrium.

Proof If W is strictly convex, so is uθ (x, y) in x , and hence the first claim follows.
The second claim is then obvious from uθ (ek, ei ) = θakk + (1 − θ) aki . The third
claim follows by continuity. ��

The usefulness of both Propositions 1 and 3 depends on how easy or hard it is to
verify that the welfare function is either concave or strictly convex on the unit simplex.
Here are necessary and sufficient conditions for each of these properties. To state them
concisely, we write e⊥ ⊂ R

m for the (m − 1)-dimensional tangent space of the unit
simplex Δ (that is, all vectors orthogonal to e ∈ R

m).

Proposition 4 Let C be the expansion of the (m − 1) × (m − 1) identity matrix to an
(m − 1)×m -matrix obtained by appending the column (−1, . . . ,−1)T ∈ R

m−1. Then
W is concave (strictly convex) over Δ if and only if the symmetric (m − 1) × (m − 1)
matrix

D = C(A + AT )CT

2 See, e.g., Section 3.1.5 in Weibull (1995), and references therein, and see also Benaïm et al. (2009) for
a classification of finite symmetric games into “stable” and “unstable” games.
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is negative semidefinite (positive definite).

Proof First observe that for any 0 < λ < 1 and any two {x, y} ⊂ Δ, we have

λW (x) + (1 − λ)W (y) − W (λx + (1 − λ)y) = 2λ(1 − λ)vT Av

with v = x − y being orthogonal to e. Writing u = (v1, . . . , vm−1)
T ∈ R

m−1, we
have for v ∈ e⊥ ⊂ R

m that v = CT u, and v �= o if and only if u �= o. Hence
2vT Av = uT Du by definition of D, and the result follows. ��

In some applications the payoff matrix A is symmetric; AT = A. In such potential
or partnership (or doubly symmetric) games, it is known that average payoff increases
along all solution trajectories to the replicator dynamic (see, e.g., Section 3.6 inWeibull
1995). For such games and any positive degree of morality, any global welfare max-
imizer is a fixed point, and every fixed point is a local welfare maximizer. Formally:

Proposition 5 Suppose AT = A, and let θ > 0. Then

(a) x ∈ argmax
z∈Δ

W (z) �⇒ x ∈ βθ (x),

(b) x ∈ βθ (x) �⇒ x ∈ arg max
z∈Δ∩U W (z) for some neighborhood U of x.

Proof Define hθ,y : Δ → R by hθ,y(x) = uθ (x, y). If y ∈ argmax
x∈Δ

W (x) then

W (y) ≥ W (x) for all x ∈ Δ, and the directional derivative of W in the direction of
x − y, evaluated at y, is not positive,

4(x − y)T Ay ≤ 0 for all x ∈ Δ,

implying xT Ay ≤ yT Ay, and therefore uθ (x, y) ≤ uθ (y, y) for all x ∈ Δ, i.e.,
y ∈ βθ (y).

Next assume y ∈ βθ (y). Then y is a global maximizer of hθ,y over Δ. In particular
the directional derivative of hθ,y in the direction of x−y, evaluated at y, is not positive,

(1 + θ)(x − y)T Ay ≤ 0 for all x ∈ Δ.

In case that (x − y)T Ay = 0 for some x , also the second directional derivative of hθ,y

in the direction of x − y, evaluated at y, is not positive,

2θ(x − y)T A(x − y) ≤ 0 for all x ∈ Δ such that (x − y)T Ay = 0.

Now the two displayed inequalities are sufficient for y to be a local maximizer of W ,
as those inequalities are also statements about first and second directional derivatives
of W , see, e.g., Bomze (2002). ��

In case of symmetric A theremay indeed be fixed points x ∈ βθ (x) that are local, but
not global,maximizers of xT Ax subject to x ∈ Δ. This happens in Example 1 for small
θ ≥ 0. In other words, any fixed point of βθ is neutrally stable in partnership games
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(again, seeBomze2002). If A is not symmetric, neither (a) nor (b) needhold.Example 3
shows that (a) can be violated, and violation of both (a) and (b) for 0 ≤ θ < 1 is
demonstrated by Example 2 when a �= b.

Remark 2 Alger andWeibull (2013) establish that every symmetric 2×2-game admits
at least one symmetricNash equilibriumbetween equallymoral players, irrespective of
their common degree of morality. This can be easily confirmed by the above analysis,
since a univariate quadratic function is either concave or strictly convex.

4 Incomplete information about others’ morality

We now consider strategic interactions between twoHomines moraleswho only know
their own degree of morality, not that of the opponent. We will call an individual’s
degree of morality the individual’s type and use the canonical notation Θ = [0, 1]
for the type space. We endow Θ with its Euclidean topology, and let μ be a Borel
probability measure on Θ , representing the type distribution in the population.

A strategy is a Borel-measurable function ξ : Θ → Δ, assigning to each type
θ ∈ Θ a strategy ξ(θ) ∈ Δ. A strategy ξ is optimal against a mixed strategy y ∈ Δ if

ξ (θ) ∈ argmax
x∈Δ

uθ (x, y) ∀θ ∈ Θ .

It follows from measurable-selection theory à la Kuratowski–Ryll-Nardzewski (see,
e.g., 18.3 and 18.4 in Aliprantis and Border 2006, or 14.29 and 14.37 in Rockafellar
and Wets 2009) that such an optimal strategy ξ : Θ → Δ exists for each y ∈ Δ.
A strategy ξ : Θ → Δ is a best reply to itself, or, equivalently, (ξ, ξ) constitutes a
symmetric Nash equilibrium under incomplete information, if the following condition
holds for all θ ∈ Θ:

ξ (θ) ∈ argmax
x∈Δ

∫
Θ

uθ (x, ξ(τ )) dμ (τ) . (4)

By linearity of the payoff function with respect to y,∫
Θ

uθ (x, ξ(τ )) dμ (τ) = uθ

(
x, ξ̄

)
where

ξ̄ = Eμ [ξ (θ)] =
∫

Θ

ξ(θ)dμ (θ) ,

is the representative agent’s mixed strategy. In other words, in order to be a best reply
to itself, a strategy ξ : Θ → Δ has to be optimal against its own representative agent’s
mixed strategy.

Existence is non-trivial. However, one may characterize Nash equilibrium by way
of first- and second-order optimality conditions. In order to state these, for each type
θ ∈ Θ let H(θ) = θ · (A + AT ), the Hessian matrix of uθ (·, y), for any y ∈ Δ. For
any strategy ξ : Θ → Δ, let
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g(θ) = H (θ) ξ (θ) + (1 − θ)Aξ̄ .

This is the gradient of the payoff uθ (x, ξ̄ )with respect to x ∈ Δ, evaluated at x = ξ(θ).
For each pure strategy i ∈ S, let

Hi (θ) = ei g
T (θ) + g(θ)eTi − ξi (θ)H(θ).

The matrix Hi (θ) is a symmetric rank-two update of the Hessian H (θ), using the
gradient g(θ) ∈ R

m and the i th unit vector ei ∈ Δ. Finally, for any strategy ξ , type
θ ∈ Θ and pure strategy i ∈ S, we define the following polyhedral cone:

Γi (θ) = {v ∈ e⊥ : ξi (θ)v j − ξ j (θ)vi ≥ 0 ∀ j ∈ S}.

The result to follow establishes that, given any type distribution μ, a strategy ξ :
Θ → Δ constitutes a Nash equilibrium under incomplete information if and only
if three conditions are met: a first-order (Lagrangian) condition, a complementary
slackness condition, and a second-order condition that significantly differs from the
usual global convexity/concavity requirements on H(θ) and W . The reason why this
particular second-order condition is sufficient is that all types’ payoff functions are
linear-quadratic in their own strategy choice (in the underlying game). We split the
statement of the result into two parts and provide a joint proof.

Theorem 1 For any Borel probability measure μ on Δ, a strategy ξ : Θ → Δ is a
best reply to itself if and only if there are Borel-measurable functions αi : Θ → R for
i = 0, 1, . . . ,m such that, for all i ∈ S and θ ∈ Θ:

[H(θ)ξ(θ)]i + (1 − θ)[Aξ̄ ]i + α0(θ) + αi (θ) = 0, (5)

αi (θ)ξi (θ) = 0, (6)

vT Hi (θ)v ≥ 0 ∀v ∈ Γi (θ) if ξi (θ) > 0. (7)

To state the second part of the result, we call a strategy η : Θ → Δ a better reply
than ξ : Θ → Δ against ξ for type θ if uθ (η (θ) , ξ̄ ) > uθ (ξ(θ), ξ̄ ).

Proposition 6 If (7) is violated for some pure strategy i and type θ with ξi (θ) > 0 and
some v ∈ Γi (θ), then there exists a better reply for this type θ , namely, the strategy
η : Θ → Δ that agrees with ξ for all types τ �= θ but has

η (θ) = ξ(θ) − ξi (θ)

vi
· v.

Proof The assertions in Theorem 1 follow from (Bomze 2016, Thm. 2.3), formulated
for minimizing the negative −uθ (·, ξ̄ ) there; note that as Δ is compact, we can ignore
the index i = 0 dealing with unbounded feasible rays there. The case of Δ has been
dealt already in Bomze (1997a, b), where also the arguments for Proposition 6 can be
found. ��
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In Example 3 we noted that no symmetric Nash equilibrium exists under complete
information in a game between equally moral players when−1 < a < 0 and 0 < θ <

1. Formally, such a situation can be represented as incomplete informationwith aDirac
measure placed on that particular type θ . We proceed to establish a sufficient condition
for the existence of symmetric Nash equilibrium under incomplete information when
the type distribution μ has no atoms. It follows from this result that the non-existence
of symmetric equilibrium under complete information and equally moral players, in
Example 3, is non-robust to arbitrarily small degrees of incomplete information about
morality, as measured, e.g., in the L1-norm.

To state the result, we write β̃θ (x) ⊆ S for the set argmaxi∈S uθ (ei , x) of pure
best replies to a mixed strategy x ∈ Δ and supp (x) ⊆ S for the support of x .

Proposition 7 Suppose that μ can be represented by a probability density function
f : Θ → R+. If the welfare function W : Δ → R is convex and there exists a strategy
x∗ ∈ Δ such that

β̃θ

(
x∗) = β̃τ

(
x∗) = supp

(
x∗) (8)

for all types θ and τ in the support of f , then there exists a Nash equilibrium (ξ, ξ)

under incomplete information, and ξ̄ = x∗.

Proof Let x∗ ∈ Δ be as stated. Partition the type space Θ into m cells Bi such that
μ (Bi ) = x∗

i for each i ∈ S. This is possible since μ has no atoms. Define ξ : Θ → Δ

by setting ξ (θ) = ei for all θ ∈ Bi and i ∈ S. Then ξ̄ = x∗. Since W is convex,
uθ (x, x∗) is convex in x ∈ Δ, and thus i ∈ β̃θ (x∗) ⇒ ei ∈ βθ (x∗) for all i ∈ S
and θ ∈ Θ . Hence, ξ (θ) ∈ argmaxx∈Δ uθ

(
x, ξ̄

)
for all θ ∈ Θ , so (ξ, ξ) is a Nash

equilibrium. ��
We note that since, for each x ∈ Δ and θ ∈ Θ , β̃θ (x) belongs to the finite power

set of S, and uθ (ei , x) is continuous (in fact, linear) in θ , β̃θ (x) is piecewise constant
on Θ , for any given x ∈ Δ. Thus, the equality in ( 8) holds generically for all θ and τ

in some open set U ⊂ Θ .
Applying Proposition 7 to Example 3, let x∗ be the barycenter xo of the mixed-

strategy simplex Δ. For any atom free type distribution μ, partition the type space Θ

into three cells, each with probability measure 1/3. Allocate all individuals in each
type cell to one and the same pure strategy. For example, the 1/3 least moral individuals
in the support of f may play strategy 1, the morally intermediate 1/3 of the population
may play strategy 2, and the most moral 1/3 of the population may play strategy 3. For
a < 0 the welfare functionW is convex and symmetric, so all three pure strategies are
optimal against x∗, for any θ ∈ (0, 1). The hypothesis of Proposition 7 is thus met, so
there exists a symmetric Nash equilibrium and it has xo as its outcome.
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