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Abstract

We analyze a bilateral trade model where the seller has to make a take-
it-or-leave-it offer to the buyer in an environment where the seller does not
know what the buyer has learned or will learn about the product fit. We
show that a generous return policy reduces the significance of this type of
uncertainty and helps the seller to regain market power. We characterize the
best-guaranteed profit the seller can obtain by using a generous return policy.
We then show that there are no other selling mechanisms that guarantees the
seller higher profits. Our result provides a novel rationale behind generous
return policies.

1 Introduction

Consumers learn about product characteristics from various sources. Firms are
therefore not only uncertain about how much value buyers get from consuming
their products, but also how well buyers know whether these products fit their
needs. This creates additional uncertainty about buyers’ willingness to pay and
therefore limits the seller’s ability to raise prices. For example, a buyer who con-
siders buying shoes online may be uncertain about the fit or may have already
tried them on at another store. Similarly, a consumer booking an airline ticket
may already have specific travel itinerary or may still wait for additional infor-
mation.

In the absence of such uncertainty, e.g., if the seller knows the buyer’s infor-
mation source or has a prior over possible information sources, then the seller’s
problem is the standard monopoly pricing problem. What this paper analyzes is
the environment where the seller neither knows nor has a prior over the buyer’s
information sources; and consequently, is unsure how the buyer will respond to
the offer.

To understand the seller’s problem better, suppose that the seller made a non-
refundable offer. The worst possible is that buyer’s information source turns out
to be the one minimizes the probability of generating signals that persuade the
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buyer to purchase at the price. Such imperfect buyer’s learning induces the de-
mand that is elastic at the price seller has offered.1 Therefore, the seller’s uncer-
tainty about the buyer’s learning process forces the seller to cut the price.

However, if the seller can offer a refund, then it can potentially foster the buyer
learning, and thereby diminish the significance of buyer’s information source on
her purchasing decision.2 With the possibility of product return, the buyer does
not lose much from buying and trying, and the seller can capture the newly-
created option value by raising the price. At the same time, for each returned
product, the seller incurs the restocking cost. Moreover, the more generous the
refund is, the more likely the buyer returns the product. The exact gain and loss
crucially depend on the buyer’s learning process. If the seller knows the buyer’s
learning process, then it can design a price-refund pair to bring a balance to this
trade-off to maximize it’s profit.3 But if the seller does not know the buyer’s
information source, how should it design a price-refund pair to maximize the
guaranteed profit it can obtain?

To answer this question, we analyze a stylized bilateral trade model: a (fe-
male) buyer’s valuation to the product is either high or low, the exact value of
which unknown to everyone including the buyer. The buyer has access to a (cost-
less) experiment that generates a signal about the buyer’s valuation. The seller
can offer a refund if the buyer chooses to return the product after the purchase.
The product return is costly to the seller. We consider three possible scenarios;
the buyer learns the outcome of the experiment (1) before the seller makes an of-
fer; (2) after the seller made a (possibly randomized) offer, but before observing
the contract she faces; (3) after observing the offer.4 As the seller’s uncertainty
regarding the timing at which the buyer learns increases, the seller’s guaranteed
profit (weakly) decreases. That is, the guaranteed profit under scenario (1) is the
highest, followed by (2) and (3).5

For each scenario, our main results (Theorems 1, 2, and 4) characterize the
seller’s best-guaranteed profit as a function of return costs. If the restocking cost
is sufficiently low, which may be realistic for software trial versions, for example,
then the seller can obtain the best guaranteed profit by offering a full refund.
Such a generous refund makes the demand inelastic, and hence enables the seller
to capture a large portion of gains from trade through a high price.

The argument becomes slightly more complex when restocking costs are high.
In this case, our optimal policy prescribes high price and almost full refund com-
bination, where restocking cost for the buyer is chosen in a way that buyer who is
almost sure to return the product will not like this option. Therefore only buyers
whose belief about product fit is high enough will take the refundable option and

1See Roesler and Szentes (2017) and Du (2018).
2See Ely et al. (2017) and Inderst and Tirosh (2015a) for a similar idea.
3See e.g., Inderst and Tirosh (2015a) and Krahmer and Strausz (2015) .
4Each scenario respectively captures the environment where the seller knows that (1) the buyer

cannot acquire any information, but the seller is uncertain what kind of information she has; (2)
the buyer cannot acquire any information after observing the contract she faces, but may acquire
additional information after learning the possible distribution over the offers she faces; and (3)
nothing about the timing at which the buyer may acquire additional information.

5Libgober and Mu (2017) analyzes the scenario (3) without refund but the product is durable.
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this makes returns relatively cheap in expectation. And even though the seller
has only flattened the highest part of the demand curve, this still reduces the
uncertainty about buyer’s information and thus raises guaranteed profit.

We also show that these bounds are sharp and robust in two ways. First, we
show (Theorem 5) that the seller cannot improve the guaranteed profits by any
other selling mechanism, including an arbitrarily sophisticated stochastic menu
of options that could screen buyers according to their information. Second, we
show (Theorem 6) that if the buyer could choose any information structure,6 then
she would choose the worst-case information structure for the seller. In particular,
the buyer can ensure that the seller’s profit is kept at the guaranteed profit bound
and the trade is efficient.

Related literature: The paper mainly contributes to four branches of economics
literature. First, the robust mechanism design literature which follows the Wil-
son (1987) critique and extends the mechanism design and pricing results to sit-
uations where the designer is uncertain about the model details.7 The closest
papers to our work are Roesler and Szentes (2017); Du (2018), who study anal-
ogous model, but without the option to offer a return policy. Therefore, their
results provide us with a benchmark, which the seller can ensure by never offer-
ing an option to return products. We show that having an option to offer return
policy will typically strictly increase seller’s best-guaranteed profits.

Second, we contribute to the information design literature.8 There are two
information design problems that we solve: we derive worst-case information
structure for the seller as well as buyer-optimal information structures. Method-
ologically we are building on results from Aumann et al. (1995); Kamenica and
Gentzkow (2011) and Au and Kawai (2017).

Third, we are adding a novel rationale for return policies. Previous literature
on refunds has previously documented many reasons why firms may offer re-
funds. Grossman (1981); Moorthy and Srinivasan (1995); Inderst and Ottaviani
(2013) have argued that warranties and return policies can be used as costly sig-
nals for product quality and product fit for the consumer. Che (1996) showed
that when consumers are uncertain about product fit and risk-averse, return pol-
icy may be used as insurance. Return policies have also studied as price dis-
crimination devices (Zhang, 2013; Escobari and Jindapon, 2014).9 In Matthews
and Persico (2005) trials and refunds reduce the buyer’s information acquisition
costs and thus allow the seller to control information acquisition. Inderst and
Tirosh (2015b) suggested a theory of return policies that is perhaps closest to
ours. They argue that return policies work as “metering devices” or two-part tar-

6For example, by delegating the information gathering to an assistant, a significant other, or a
real-estate agent.

7 See for example Bergemann and Schlag (2008, 2011); Roesler and Szentes (2017); Auster
(2018); Terstiege and Wasser (2017).

8See Bergemann and Morris (2017) for a review.
9Escobari and Jindapon (2014) also provide some empirical evidence on the use of refundable

tickets by airlines. They show that fully refundable ticket is typically about 50% more expensive
than a non-refundable ticket, but the difference disappears in the last week before the departure.
These facts also fit well to our model predictions.
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iffs (see Schmalense (1981)), where generous refunds make different consumers
more similar and thus allow the firm to capture more of the surplus by raising
prices10 In our work we focus on another dimension of uncertainty: uncertainty
about consumer’s information about her valuation rather than uncertainty about
her valuation. Moreover, we focus on robust pricing, whereas the previous liter-
ature studying refunds has focused on the seller who knows the distribution of
the valuations.

Finally, our work is also related to the literature on sequential screening and
dynamic mechanism design.11 This literature has shown that advance sales to
still uninformed consumers may help the seller to increase profits (Gale and Holmes,
1992, 1993; Courty and Li, 2000; Eso and Szentes, 2007; Nocke et al., 2011; Gallego
and Sahin, 2010; Ely et al., 2016). In contrast to this literature, in our model the
main benefit of offering a generous refund policy is not sequential screening, but
rather an improvement of guaranteed profits and seller’s market power due to
reduced uncertainty. In fact, we show that offering menus to screen consumers
may be optimal in some situations, but does not guarantee higher profits than a
simple stochastic pricing and return policy.

2 Model

There are a (male) seller who can produce a product at no cost, and a (female)
buyer whose valuation for the product is v ∈ {0, 1}. The buyer’s valuation v
follows a commonly known distribution such that π = Pr (v = 1). No-player,
including the buyer, does not know the realization of v. However, the buyer
receives a signal about her true valuation v prior to purchase. (The detail will be
explained momentarily.)

The seller’s (pure) strategy is a contract (p, r) that specifies a sales price p
together with a refund r. The seller may use a mixed strategy ∆ {(p, r)}. Based
on the information she has, the buyer decides whether to buy after observing the
contract (p, r) ∼ ∆ {(p, r)}. We call the buyer’s mixed strategy, i.e., a distribution
over contracts, a policy; and the realized contract as an offer.

If the buyer purchases the product, then she learns the realized value of v. If
r = 0, then the game ends. If r > 0, then the buyer decides whether or not to
return the product. When the product gets returned, the seller needs to incur the
commonly known restocking cost c > 0. We sometimes use γ ≡ c

1+c ∈ (0, 1) to
denote the normalized restocking cost.

If the buyer keeps the product, or, r = 0, then her payoff is v − p, and the
seller’s profit is p. If r > 0 and she returns, then her payoff is r − p, and the
seller’s profit is p− r− c, respectively. If she does not buy the product, then her
payoff and the seller’s profit are both zero.

We can represent a buyer’s signal as a posterior q = Pr [v = 1] over v ∈ {0, 1}
that is a random variable drawn from a cumulative distribution function F ∈

10Similar ideas have studied in other contexts, such as overbooking by airlines (Ely et al., 2016).
11See citebergemann2010dynamic,vohra-2012-review for literature reviews.
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F ≡{F : EF [q] = π}.12 For this reason, we use a distribution over posteriors F
to represent the buyer’s information structure, and call it a signal distribution. For
the same token, by a signal q, we refer to the realization of the posterior drawn
from signal distribution F.

We are interested in the seller’s best profit guarantee when he is uncertain of
the buyer’s signal distribution. More precisely, the buyer chooses a signal dis-
tribution F from a subset FB of F unknown to the seller; but the seller neither
has a prior distribution over FB nor observes the buyer’s choice of F. The tim-
ing at which the buyer chooses a signal distribution affects the seller’s best profit
guarantee.

Policy-independent signal: The buyer receives signal before the policy is an-
nounced, i.e. at t = 1 in Figure 1. The signal distribution F ∈ F is there-
fore independent of policy. This captures the environment where the seller
knows that buyer cannot acquire any additional information, but she may
have information that the seller is unaware of.

Policy-dependent signal: The buyer receives the signal after the policy is an-
nounced, i.e. at t = 2 in Figure 1. The signal distribution F∆(p,r) ∈ F may
depend on the policy ∆(p, r), but not the realization of (p, r). For example,
the buyer may gather less information when she expects either very low or
very high price (on average), or if the refund policy is very generous (with
high probability).

Offer-dependent signal: The buyer receives the signal after the offer is realized,
i.e. at t = 3 in Figure 1. The signal distribution F(p,r) ∈ F may depend on
the realized offer (p, r). In this case the buyer has full flexibility to adjust
information gathering to particular price and refund offer she receives.

t = 1
Policy-independent

signal

Seller chooses
policy ∆{(p, r)}

t = 2
Policy-dependent

signal

Offer (p, r)
realizes

t = 3
Offer-dependent

signal

Purchase
decision

Value v
realizes

Return
decision

time

Figure 1: Timing

More formally, let V ((p, r) |F) be the seller’s expected profit from offer (p, r)
and the buyer’s signal distribution after t = 3 is F. Similarly, E∆{(p,r)}V ((p, r) |F)
represents the seller’s expected profit from a policy ∆ {(p, r)} when the buyer’s
signal distribution after t = 3 is F. The best profit guarantee the seller can obtain

12Notice that F ∈ F if and only if
∫ 1

0 F (q) dq = 1− π.
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when the buyer chooses F at t = 1, 2, 3 are, respectively,

V∗1 ≡ sup
(p,r)

min
F∈F

V ((p, r) |F) ,

V∗2 ≡ sup
∆{(p,r)}

min
F∆{(p,r)}∈F

E∆{(p,r)}V
(
(p, r) |F∆{(p,r)}

)
,

V∗3 ≡ sup
(p,r)

min
F(p,r)∈F

V
(
(p, r) |F(p,r)

)
.

Obviously, V∗1 ≥ V∗2 ≥ V∗3 . We identify V∗1 , V∗2 , and V∗3 . Our results show that
V∗1 = V∗2 for all parameter values; and V∗2 = V∗3 if and only if the (normalized)
restocking cost γ is small enough. That is, if the restocking cost is sufficiently
small for a given prior π, then the timing at which the buyer chooses her signal
distribution does not affect the seller’s best guaranteed profit. In contrast, when
the restocking cost is sufficiently large, whether the buyer chooses a signal distri-
bution after observing an offer do affect the seller’s best guaranteed profit. That
is, V∗1 > V∗3 . Nevertheless, our result that V∗1 = V∗2 informs us that the seller
can completely neutralize this negative effect by making a randomized offer and
thereby by keeping the buyer in the dark about the actual offer she will face.

3 Analysis

3.1 Offer-Dependent Signal

We start with the case where the information structure may depend on the real-
ized contract (p, r), i.e., the buyer may choose a signal distribution at t = 3. Our
goal is to identify the best profit guarantee V∗3 ≡ sup(p,r) minF(p,r)∈F V

(
(p, r) |F(p,r)

)
.

With a slight abuse of notation, let V (q| (p, r)) be the seller’s expected profit
when the offer is (p, r) and the buyer’s signal is q. Then, V

(
(p, r) |F(p,r)

)
=

EF(p,r) [V (q| (p, r))]. Also for notational simplicity, we use V3 (p, r) to denote

minF(p,r)∈F V
(
(p, r) |F(p,r)

)
, so that V∗3 = sup(p,r) V3 (p, r). We say an offer (p, r)

is non-refundable when r = 0; and is refundable when r > 0.
Suppose that the seller makes a non-refundable offer (p, 0). Then, the buyer

with signal q buys if and only if q ≥ p, i.e.,

V (q| (p, 0)) =
{

0 q < p
p q > p .

To derive V3 (p, 0), we utilize the concavification approach.13 Let con [−V (·| (p, 0))] (q)
be the value of concave closure of−V (·| (p, 0)) at q.14 Then V3 (p, 0) = −con [−V (·| (p, 0))] (π),
which is represented by the red-dotted line in Figure 2. The seller’s profit is mini-
mized when the probability of signal being larger than p is minimized, i.e., when
F(p,0) minimizes 1− F(p,0) (p) subject to EF(p,0)

[q] = π.

13See Aumann et al. (1995) and Kamenica and Gentzkow (2011).
14The concave closure of function G is defined by con(G)(q) = sup{g|(q, g) ∈ co(G)}, where
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q0

0

p

p

1

1

V3 (p, 0)

π

V(q|(p, 0))
−con [−V (·| (p, 0))] (q)

Figure 2: Profit of a non-refundable offer (p, 0)

If π > p, then this occurs when the buyer’s signal distribution induces two
signals p (which results in no trade) and 1 (which results in trade) with probabil-
ities 1−π

1−p , and π−p
1−p , respectively. In contrast, if π ≤ p, then this occurs when the

buyer’s signal does not disclose any additional information, i.e., induces signal
π (which results in no trade) with probability one. While a higher p results in
higher a profit margin should trade occur, it leads to a lower probability of trade.
The seller brings a balance to this trade-off by offering p = 1−

√
1− π. More

formally,

V3 (p, 0) = −con [−V (·| (p, 0))] (π) =

{
0 p ≥ π

p× π−p
1−p p < π

≤ sup
p

V3 (p, 0) = sup
p∈[0,π]

p
π − p
1− p

=
(

1−
√

1− π
)2

. (1)

Next, suppose that the seller allows the buyer to return the product, i.e., makes
an offer (p, r) such that r > 0. Without loss of generality, we only consider the
case where p ≥ r.15 Consider the buyer with signal q. Since her payoff from buy-
ing is q× 1 + (1− q)× r− p, she buys if only if her signal is above the marginal
signal q̃ (p, r) ≡ p−r

1−r ; and returns with probability 1− q if she buys. The seller’s
profit from the buyer with signal q is thus

V (q| (p, r)) =
{

0 q < q̃ (p, r)
v (q; p, r) q > q̃ (p, r) , (2)

where v (q; p, r) ≡ p− (1− q) (c + r).
Observe that if the marginal signal q̃ (p, r) is sufficiently low, i.e., if the refund

is sufficiently generous, then the buyer buys even when her signal q is sufficiently
low. The buyer with a low signal is likely to return the product, and thereby is

co(G) is the convex hull of the graph of G.
15Notice that if p < r, then buyer buys irrespective of the value of signal. Therefore, V3 (p, r) <

V3 (p, r− ε) for a sufficiently small ε > 0.
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q0

0

p

pγq̃
v(q̃)

1

V(q|(p, r))
−con [−V (·| (p, r))] (q)

(a) q̃ (p, r) < γ

q0

0

p

pγ q̃

v(q̃)

1

V(q|(p, r))
−con [−V (·| (p, r))] (q)

(b) q̃ (p, r) > γ

Figure 3: Profit from refundable offer (p, r)

likely to bring the seller an (ex-post) negative profit. More specifically, as cap-
tured by the increasing blue-lines in Figures 3(a) and 3(b),

v (q̃ (p, r) ; p, r) ≤ 0 if and only if q̃ (p, r) ≤ γ; and
v (q; p, r) is increasing in q.

Therefore, if q̃ (p, r) < γ, then as captured by the red dotted-line in Figure 3(a),
the seller’s profit is minimized when the probability of the seller receiving a sig-
nal q̃ (p, r) is maximized. The seller then can improve his guaranteed profit by
offering a less generous refund, and thereby increasing the marginal signal.

In contrast, if the marginal signal is sufficiently high so that q̃ (p, r) > γ, then
the buyer who buys the product always brings a positive (ex-post) profit to the
seller. The seller’s profit is thus minimized when the probability of the seller
receiving a signal above q̃ (p, r) is minimized, as captured by the red dotted line
in Figure 3(b). The seller then can improve his guaranteed profit by offering a
more generous refund, and thereby by lowering the marginal signal.

Combining these observations we conclude that if the seller were to offer a
positive refund, then he should set the price p as close to one as possible, and r
to p−γ

1−γ so that the marginal signal is exactly at γ. Hence the profit the seller can

guarantee himself by offering a positive refund is π−γ
1−γ . Recall that the seller’s best

guaranteed profit without refund is
(
1−
√

1− π
)2

, as derived in (1). Thus, the
seller’s best guaranteed profit when the buyer may choose a signal distribution
at t = 3 is

V∗3 = sup
p,r

V3 (p, r) =

{
π−γ
1−γ γ ≤ γ̂ (π)
(
1−
√

1− π
)2

γ ≥ γ̂ (π)
, (3)

where γ̂ (π) ≡ 2(1−
√

1−π)
2−
√

1−π
. Furthermore, the best guaranteed profit monotoni-

cally converges to full surplus from trade π as the restocking cost converges to 0.
The resulting bound is depicted on Figure 4.
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γ0 γ̂ π

No refundGenerous refund

1

1

π

Generous refund: π−γ
1−γ

No refund:
(
1−
√

1− π
)2

Figure 4: Best guaranteed profit V∗3

Theorem 1. Suppose that the buyer may choose a signal distribution at t = 3. Then the
seller’s best guaranteed profit is V∗3 defined in (3). For any ε > 0, the seller’s can achieve

(1− ε)V∗3 either by offering a generous refund
(

1− ε, 1− ε
1−γ

)
(when γ ≤ γ̂ (π)); or

no refund (p, r) =
(
1−
√

1− π, 0
)

(when γ ≥ γ̂ (π)).

3.2 Policy-Independent Signal

We now consider the case where the buyer may choose a signal distribution only
at t = 1. Recall that given an offer (p, r), the marginal signal is q̃ (p, r) = p−r

1−r .
Therefore,

V1 ((p, r) |F) = p (1− F (q̃ (p, r)))− 1r>0 (c + r)
∫ 1

q̃(p,r)
(1− q)dF (q) .

Our goal is to identify V∗1 ≡ sup(p,r) minF∈F V ((p, r) |F). To this end, we intro-
duce a few notations. First, to identify the profit from a non-refundable offer,
define

GV (q) ≡





0 q ∈ [0, V)
1− V

q q ∈ [V, 1)
1 q = 1

. (4)

Then, for a given buyer’s signal distribution F, the highest profit the seller can
obtain by a non-refundable offer is identified by inf {V : F (q) ≥ GV (q) for all q},
which we denote by VNR (F).16 Also define

FV (q) ≡





GV (q) q ∈ [0, γ)
1−Φ (V) q ∈ [γ, 1)
1 q = 1

. (5)

16This comes from the same argument as in Roesler and Szentes (2017). The seller’s profit from
offering (p, 0) is V ((p, 0) |F) = p (1− F (p) + ∆F (p)). Furthermore, since F (q) ≥ GVNR (q) for
all q, we have V ((p, 0) |F) ≤ p

(
1− GVF (p)

)
= VNR (F). Therefore, supp V ((p, 0) |F) = VNR (F).
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where

Φ (V) =





V(ln V
γ−1)+π

1−γ V ∈ [0, γ)
π−γ
1−γ V ∈ [γ, 1)

.

Notice that
∫ 1

0 FV (q) dq = 1− π. Therefore, if the buyer’s signal distribution is
FV , then Φ (V) is (the supremum of) the seller’s profit from a generous refund(

1− ε, 1− ε
1−γ

)
. Observe that since Φ (V) is strictly decreasing in V on [0, γ),

and limV→γ Φ (V) = π−γ
1−γ , either (i) Φ (V) > V for all V ∈ [0, γ) (when π−γ

1−γ > γ,

or equivalently γ < 1−
√

1− π), or (ii) there exists unique Ṽ = π−Ṽ
1−γ−ln Ṽ

γ

∈ [0, γ]

such that Φ
(
Ṽ
)
= Ṽ (when γ ≥ 1−

√
1− π). Let V∗ be the largest V ∈ [0, γ]

such that Φ (V) ≥ V, i.e.,

V∗ ≡
{

γ γ < 1−
√

1− π

Ṽ γ ≥ 1−
√

1− π
.

Figuires 5(a) and 5(b) illustrate FV∗ when γ < 1−
√

1− π and γ ≥ 1−
√

1− π,
respectively.

q0

1

1V γ

Φ(V)

FV
GV

(a) γ < 1−
√

1− π

q0

1

1V γ

Φ(V)FV
GV

(b) γ ≥ 1−
√

1− π

Figure 5: FV∗

It is straightforward to observe that Φ (V∗) = sup(p,r) V ((p, r) |FV∗) by con-
struction of FV∗ . Below, we show that

sup
(p,r)

V ((p, r) |F) ≥ sup
(p,r)

V ((p, r) |FV∗) for all F ∈ F.

That is, V∗1 = Φ (V∗). To see this, first suppose there exists a distribution F
such that F (q) < FV∗ (q) for some q ∈ [0, γ). Then, since VNR (F) > V∗, we
have sup(p,r) V ((p, r) |F) > sup(p,r) V ((p, r) |FV∗ (q)). Next, suppose that F (q) ≥
FV∗ (q) for all q ∈ [0, γ). Recall that when the seller offers a generous refund(

1− ε, 1− ε
1−γ

)
, the buyer buys if and only if q ≥ γ; and the seller’s profit from
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the buyer with signal q is (1− ε)
q−γ
1−γ . Therefore, the seller’s profit from a gen-

erous refund when the buyer’s signal distribution is F is (weakly) higher than
(1− ε)Φ (V∗). Consequently, sup(p,r) V ((p, r) |F) ≥ sup(p,r) V ((p, r) |FV∗ (q)).

We note that Φ (V∗) is the unique solution V∗1 ∈ (0, γ] that solves the follow-
ing equation:17

V∗1 =
π −V∗1

1− γ− ln V∗1
γ

. (6)

We therefore have the following theorem.

Theorem 2. Suppose that the buyer may choose signal distribution at t = 1. Then, the
best guaranteed profit for the seller V∗1 is defined by (6).

q0

1

1γ

V∗

FV∗ , V∗ = π−γ
1−γ > γ

(a) V∗1 (blue) and V∗3 (red)

q0

1

1V∗ γ

V∗

FV∗

(b) V∗1 for various priors

Figure 6: Best guaranteed profit V∗1

A few observations follow. The best guaranteed profit when the seller cannot
offer any refund, supp minF∈F V ((p, 0) |F) (i.e., the brown dotted-line in Figure
6(a)), is strictly lower than V∗1 = sup(p,r) minF∈F V ((p, r) |F) for any level of re-
stocking cost γ. That is, being able to offer a refund strictly improves the seller’s
best guaranteed profit. This is a clear contrast to the case where the buyer may
choose a signal distribution in t = 3, where the refund improves the best guaran-
teed profit if and only if the (normalized) restocking cost γ is sufficiently small,
i.e., γ < γ̂ (π).

Next, when the restocking cost γ is small, i.e., γ < 1−
√

1− π, whether the
buyer may choose a signal distribution at t = 1 or t = 3 does not affect the
seller’s best guaranteed profit. That is, the blue-line and the red dotted-line in
Figure 6(a) coincide. This is because when γ is small, or equivalently the prior
π is sufficiently large, the cost of offering a generous refund

(
1− ε, 1− ε

1−γ

)
is

not significant. Furthermore, as we have seen in the previous section, the worst
signal distribution for a generous refund

(
1− ε, 1− ε

1−γ

)
does not depend on ε,

17V∗1 = −π

W−1

(
− π

γ eγ−2
) , where W−1(·) denotes the lower branch of the Lambert’s W.
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and has the support that consists of γ and 1.18 This is, however, also is the worst
distribution when the buyer chooses signal distribution only before she observes
the policy, as depicted in Figure 5(a). Therefore, knowing that the buyer cannot
choose a signal distribution at t = 3 does not help the seller improving his best
guaranteed profit.

As one can see in Figure 6(b), the seller’s best guaranteed profit strictly in-
creases as the prior π goes up (for a given restocking cost γ); and as the restocking
cost γ goes down (for a given prior π).

We now construct the seller’s strategy that achieves V∗1 . When the restocking
cost is small, i.e., γ < 1−

√
1− π, we already know that a generous refund offer(

1− ε, 1− ε
1−γ

)
achieves (1− ε)V∗1 . Therefore, we limit our attention to the case

where γ ≥ 1−
√

1− π.
We note that for any seller’s pure strategy (p, r) such that V ((p, r) |F∗V) ≥

V∗1 − ε, there exists a signal distributiuon F such that V∗1 > V ((p, r) |F). However,
we show that, for any ε̃ > 0, the seller can guarantee himself a profit ε̃ away
from V∗1 by the following policy Sε (p, r), which we call the exponential pricing
policy with a generous refund: the seller makes (i) offers without refunds (p, 0) on
p ∈ [V∗1 , γ) with density sε

0 (p) = 1

p
(

1−γ−ln
V∗1
γ

) ; and (ii) a generous refund (p, r) =

(
1− ε, 1− ε

1−γ

)
with probability sr = 1−

∫ γ
V∗1

sε
0 (p) dp = 1−γ

1−γ−ln
V∗1
γ

.19

Theorem 3. The seller achieves the profit that is ε̃ away from the best guaranteed profit
V∗1 either by (i) offering a generous refund (when γ ≤ 1−

√
1− π); or (ii) using the

exponential pricing policy with with a generous refund Sε (p, r) for a sufficiently small ε
(when γ > 1−

√
1− π).

Proof. In the appendix.

3.3 Policy-Dependent Signal

We now consider the case where the buyer may choose a signal distribution only
at t = 2. Our goal is to identify

V∗2 ≡ sup
∆{(p,r)}

min
F∆{(p,r)}∈F

E∆{(p,r)}V
(
(p, r) |F∆{(p,r)}

)
.

As an immediate corollary of Theorem 3, we have the following theorem.

Theorem 4. Suppose that the buyer may choose a signal distribution only at t = 2.
Then, for any restocking cost γ, V∗1 = V∗2 . The seller achieves the profit that is ε̃
away from the best guaranteed profit either by (i) offering a generous refund (when
γ ≤ 1 −

√
1− π); or (ii) using the exponential pricing policy with with a generous

refund Sε (p, r) for a sufficiently small ε (when γ > 1−
√

1− π).
18See Figure 3.
19This is a variant of mechanism found in Du (2018).
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3.4 Direct Mechanism

We have identified the best guaranteed profit that the seller can achieve with a
uniform pricing with refunds. One may wonder if the seller can improve his best
guaranteed profit by using a more intricate mechanism that potentially screens
the buyer based on her signal q. Below we show that there exists no such a mech-
anism.

To this end, consider the environment where the buyer may choose a signal
distribution only at t = 1. We first note that, for any mechanism, there exists an
outcome-equivalent simple static direct mechanism with refunds.

Definition 1. We say a direct mechanism M ≡ {p (q) , {α0 (q) , αr (q)}}q∈[0,1] is a
direct mechanism with refunds if, for each buyer’s signal q ∈ [0, 1], the mechanism
specifies (i) p(q): the transfer from the buyer to the seller; (ii) α0 (q) ∈ [0, 1]: the
probability that the buyer receives the product without an option to return; and (iii)
αr (q) ∈ [1− α0 (q) , 1]: the probability that the buyer receives the product with an
option to return with refund r = 1.

Lemma 1. For any outcome the seller can induce by an indirect mechanism, there exists
an outcome-equivalent direct mechanism with refunds that is individually rational and
incentive compatible.

Proof. In the appendix.

Under the direct mechanism with refunds M, the buyer’s payoff of reporting
q′ when her signal is q is

U
(
q′; q|M

)
≡
(
α0
(
q′
)
+ αr

(
q′
))

q + αr
(
q′
)
(1− q)− p (q)

= q× α0
(
q′
)
−
(

p (q)− αr
(
q′
))

.

The seller’s profit from the buyer with signal q is

R (q|M) ≡ p (q)− αr
(
q′
)
(1− q) (c + 1)

= p (q)− αr
(
q′
) 1− q

1− γ
,

and hence his profit when the buyer’s signal distribution is F is

V (M; F) ≡
∫ 1

0
R (q|M) dF (q) .

Thus seller’s objective is to find a mechanism M = {p (q) , {α0 (q) , αr (q)}}q∈[0,1]
that solves

max
M∈M

min
F∈F

V (M; F) (7)

where M is the set of all direct mechanisms with refunds M that satisfy the fol-
lowing two conditions:

IC: U (q; q|M) ≥ U
(
q′; q|M

)
for all q′ and q

IR: U (q; q|M) ≥ 0 for all q.
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By adopting the standard argument, we can simplify the seller’s problem to
the one in which he only chooses an increasing function α0 (·) (instead of M,
which is a triplet of functions, that is individually rational and incentive com-
patible). To formally state this result, for a function α0 : [0, 1] → [0, 1], define
R (π; α0) ≡ −con [−R (q; α0)] (π), where

R (q; α0) ≡
{

q× α0 (q)−
∫ q

0 α0 (q̃) dq̃ if q < γ

q× α0 (q) +
q−γ
1−γ (1− α0 (q))−

∫ q
0 α0 (q̃) dq̃ if q ≥ γ

. (8)

We then have:

Lemma 2. Take α∗0 (q) ∈ arg maxα0∈A R (π; α0), where A is the set of all increasing
functions from [0, 1] to [0, 1]. Then M∗ = {p∗ (q) , {α∗0 (q) , α∗r (q)}}q∈[0,1], where
α∗r (q) = 1q∈[γ,1] × (1− α0 (q)), and p∗ (q) = qα∗0 (q) + α∗r (q) −

∫ q
0 α∗0 (q̃) dq̃, is a

solution to the problem (7). Furthermore, there exists V ∈ [0, γ] such that

R (q; α∗0) =

{
0 if q < V

q−V
1−γ−ln V

γ

if q ≥ V .

and the seller’s best guaranteed profit is

max
M∈M

min
F∈F

V (M; F) = max
V∈[0,γ]

π −V
1− γ− ln V

γ

.

Proof. In Appendix.

Theorem 5. maxM∈M minF∈F V (M; F) = V∗1 = V∗2 . That is, the best guaranteed
profit under any mechanism is bounded from above by V∗1 .

Proof. It is straightforward to verify that π−V
1−γ−ln V

γ

is maximized at V = V∗1 . Fur-

thermore V∗1 =
π−V∗1

1−γ−ln V∗
γ

by (6). Therefore, we have the required result.

4 Feasible Outcomes

In this section, we identify the information structure that maximizes the buyer’s
welfare, as well as outcomes that can be supported by some information struc-
ture.

We first characterize the buyer-optimal outcome. Without loss of generality,
we assume that the buyer chooses an information structure at t = 1 in Figure 1,
and observe a signal at t = 3. The buyer’s choice becomes public information,
and it is assumed that the buyer cannot change the information structure she has
chosen after t = 1.

Given our focus on the buyer-optimal outcome, we assume that when the
seller is indifferent between two or more offers, the seller makes an offer that
induces a higher buyer’s payoff.

Then there are two possible scenarios that results in different buyer’s payoffs.
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Policy-independent signal The buyer chooses a single signal distribution F∈ F

at t = 1. The seller chooses an offer (p, r) to maximize his profit.

Offer-dependent signal The buyer chooses a set of signal distributions
{

F(p,r)

}
(p,r)

at t = 1 that maps each possible seller’s offer (p, r) into a possibly different
signal distribution F(p,r) ∈ F. The seller chooses an offer (p, r) to maximize
his profit.

More formally, let U ((p, r) |F) be the buyer’s payoff when her signal distribu-
tion at t = 3 is F∈ F, and the seller’s offer is (p, r). Also, let V ((p, r) |F) be the
seller’s profit from offer (p, r) and the buyer’s signal distribution after t = 3 is
F. Then, the buyer-optimal outcomes when the signals are, policy-independent,
and offer-dependent, are respectively characterized as

U∗1 ≡ max
F∈F

U ((p1, r1) |F) s.t. (p1, r1) ∈ arg max
(p,r)

V ((p, r) |F) (9)

U∗3 ≡ max
F(p,r)∈F

U
(
(p3, r3) |F(p3,r3)

)
s.t. (p3, r3) ∈ arg max

(p,r)
V
(
(p, r) |F(p,r)

)

Our goal is to identify U∗1 and U∗3 . Before proceeding to with the analysis,
we make two observations. First, U∗1 ≤ U∗3 . Furthermore, the total surplus is
bounded from above by π. However, the preceding analysis identifies that the
seller’s best guaranteed profit is V∗1 when the signal is policy-independent (The-
orem 2); and V∗3 (≤ V∗1 ) when the signal is offer-dependent (Theorem 1). There-
fore,

U∗1 ≤ π −V∗1 and U∗3 ≤ π −V∗3 .

The theorem below shows that the buyer can obtain the respective upper
bounds.

Theorem 6. If the buyer can choose and commit to a policy-independent signal distri-
bution at t = 1, then her payoff under the buyer-optimal outcome is U∗1 = π − V∗1 . If
she can choose and commit to a set of offer-depend signal distributions at t = 1, then, her
payoff under the buyer-optimal outcome is U∗3 = π −V∗3 .

Proof. In the Appendix.

We note that there exist multiple policy-independent signal distributions (or
sets of offer-dependent signal distributions) that support result in a same buyer-
optimal outcomes. Also, as an immediate corollary, we can characterize pairs
of buyer’s payoff and seller’s profit that can be supported by some informa-
tion structure. More precisely, we say

(
Û, F̂

)
is a feasible outcome supported by a

policy-independent signal F if ( p̂, r̂) ∈ arg max(p,r) V ((p, r) |F); V̂ = V (( p̂, r̂) |F);
and U = Û (( p̂, r̂) |F). Similarly, we can define a feasible outcome supported by
a set of offer-dependent signal distributions. Then, the set of feasible outcomes
O1 supported by some policy-independent signals; and the set of outcomes O3
supported by some set of offer-dependent signal distributions are, respectively,

O1 ≡ {(U, V) : V ∈ [V∗1 , π −U] , U ∈ [0, π −V∗1 ]}
and O3 ≡ {(U, V) : V ∈ [V∗3 , π −U] , U ∈ [0, π −V∗3 ]} .
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(a) O1: Policy-dependent signal
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(b) O3: Offer-dependent signal

Figure 7: Feasible outcomes

5 Discussion

In this paper, we analyzed a bilateral trade problem, where the seller does not
know what kind of information the buyer has about her own valuation. We
showed that offering a well-designed return policy ensures the seller larger prof-
its. We characterized the best-guaranteed profit bounds under various assump-
tions and showed how to achieve these bounds by simple stochastic pricing pol-
icy. The bounds are also sharp, there are no other mechanisms that ensure the
seller higher profits. Moreover, the worst-case information structure that we
identify is also natural in the sense that if the buyer would be able to pre-commit
to an information structure, then it would be optimal for the buyer.

Although we only focused on a single buyer-seller interaction, it is natural
to expect that the same ideas extend in other settings. An alternative interpreta-
tion of our buyer-optimality result is that if a buyer could ex-ante delegate the
information gathering to a third party20 knowing that the seller will respond to
any information structure by optimal pricing and return policy, then our best-
guaranteed profit bound gives a constraint for buyer optimality. We show that
in fact, the buyer can always choose an information structure and an equilibrium
that leads to efficient outcome and guarantees the seller his best guaranteed profit
and nothing more.

A similar analysis could be used in other problems, such as social planner’s
problem or platform design. A designer (for example, a platform such as eBay
or Airbnb) could choose information that will be revealed to the buyers about
the product. The seller chooses pricing and return policy optimally and the
buyer makes an optimal purchase and return decisions. As we derive the Pareto-
optimality frontier, it is natural to expect that the optimal outcomes for such prob-
lems will be on the frontier and coincide with our results.

20Such as an assistant, a significant other, a real estate agent, or an algorithm.
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A Proofs for Section 3 (Analysis)

Proof of Theorem 3:
When F is the buyer’s information structure, the seller’s payoff of using policy

Sε is

ESε [V ((p, r) |F)] =
∫ γ

V∗1
p (1− F (p)) sε

0 (p) dp

+ sr

∫ 1

γ

(
(1− ε)− (1− q)

((
1− ε

1− γ

)
+ c
))

dF (q) .

Then,
∫ γ

V∗1
p (1− F (p)) sε

0 (p) dp =
1

1− γ + ln V∗1
γ

∫ γ

V∗1
(1− F (p)) dp

≥ 1

1− γ + ln V∗1
γ

∫ γ

0
(1− F (p)) dp,

and

sr

∫ 1

γ

(
(1− ε)− (1− q)

((
1− ε

1− γ

)
+ c
))

dF (q)

=
1− γ

1− γ + ln V∗1
γ

(
1− (1 + c)

∫ 1

γ
F (q) dq− ε

∫ 1

γ

(
1 +

1− q
1− γ

)
dF (q)

)

=
1− γ

1− γ + ln V∗1
γ

(
1− 1

1− γ

∫ 1

γ
F (q) dq− ε

∫ 1

γ

(
1 +

1− q
1− γ

)
dF (q)

)

Therefore,

ESε [V ((p, r) |F)] ≥

(
−
∫ 1

0 F (p) dp−V∗1 + 1
)
− ε (1− γ)

∫ 1
γ

(
1 + 1−q

1−γ

)
dF (q)

1− γ− ln V∗1
γ

=
− (1− π)−V∗1 + 1− ε (1− γ)

∫ 1
γ

(
1 + 1−q

1−γ

)
dF (q)

1− γ− ln V∗1
γ

=
π −V∗1

1− γ− ln V∗1
γ

− ε (1− γ)

1− γ− ln V∗1
γ

∫ 1

γ

(
1 +

1− q
1− γ

)
dF (q)

= V∗1 −
ε (1− γ)

1− γ− ln V∗1
γ

∫ 1

γ

(
1 +

1− q
1− γ

)
dF (q)

We thus have the required result.

Proof of Lemma 1: Any outcome the seller can induce by an indirect mecha-
nism can be induced by an individually-rational and incentive-compatible direct
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mechanism Φ =
{

αq, pq,
{(

κ0
q , τ0

q

)
,
(

κ1
q , τ1

q

)}}
that specifies, for each q ∈ [0, 1],

(i) αq: the probability that the buyer receives the product; (ii) pq: the trans-

fer from the buyer to the seller; and (iii)
{

κv
q , τv

q

}
v∈{0,1}

: the direct mechanism

that specifies, for each buyer’s true valuation v ∈ {0, 1}, (a) κv
q : the probabil-

ity the buyer keeps the product; and (b) τv
q : the transfer from the seller to the

buyer with the following properties: (IC) κ1
q + τ1

q ≥ 1 and κ0
q + τ0

q ≥ 0 and (IR)
κ1

q + τ1
q ≥ κ0

q + τ0
q and τ0

q ≥ τ1
q . Notice that for any stochastic direct mecha-

nisms (over
{

αq, pq,
{(

κ0
q , τ0

q

)
,
(

κ1
q , τ1

q

)}}
), there exists an outcome-equivalent

deterministic direct mechanism. So without loss, we limit our attention to the
deterministic mechanisms.

Under this direct mechanism Φ =
{

αq, pq,
{(

κ0
q , τ0

q

)
,
(

κ1
q , τ1

q

)}}
, the payoff

of the buyer with signal q and the seller’s profit from her are, respectively,

u (Φ) ≡ αq

(
q
(

κ1
q + τ1

q

)
+ (1− q) τ0

q

)
− pq,

v (q|Φ) ≡ pq − αq

[
q
((

1− κ1
q

)
c + τ1

q

)
− (1− q)

((
1− κ0

q

)
c + τ0

q

)]
.

Notice that without loss, we can assume that κ1
q = 1, τ1

q = 0, τ0
q = 1. To see

this, consider Φ̃ ≡
{

αq, p̃q,
{(

κ̃0
q , τ̃0

q

)
,
(

κ̃1
q , τ̃1

q

)}}
such that

(
κ̃1

q , τ̃1
q

)
6= (1, 0); and

Φ ≡
{

αq, pq,
{(

κ0
q , τ0

q

)
,
(

κ1
q , τ1

q

)}}
such that (i)

(
κ1

q , τ1
q

)
= (1, 0); (ii)

(
κ0

q , τ0
q

)
=(

κ̃0
q , 1
)

; (iii) pq = p̃q − αqq
(

κ̃1
q + τ̃1

q − 1
)
+ αq (1− q)

(
τ̃0

q − 1
)

. Then,

u
(
Φ̃
)
= αq

(
q
(

κ̃1
q + τ̃1

q

)
+ (1− q) τ̃0

q

)
− p̃q

= αq (q + (1− q))− pq = u (Φ)

and

v
(
q|Φ̃

)
= p̃q − αq

[
q
((

1− κ̃1
q

)
c + τ̃1

q

)
− (1− q)

((
1− κ̃0

q

)
c + τ̃0

q

)]

= pq − αq

[
q
((

1− κ̃1
q

)
(c + 1)

)
+ (1− q)

((
1− κ̃0

q

)
c + 1

)]

≤ pq − αq (1− q)
((

1− κ̃0
q

)
c + 1

)
= v (q|Φ) .

If we denote α0 (q) = αq (1− q) κ̃0
q , and αr (q) = αq

(
q + (1− q)

(
1− κ̃0

q

))
so that

α0 (q) + αr (q) = αq, then we have the required result.

Proof of Lemma 2: We first show that for any direct mechanism with refunds
M̃ ∈ M, there exists another direct mechanism with refunds M ∈ M with the
following properties: (i) R

(
q|M̃

)
≤ R (q|M) for all q; (ii) α0 (q) is increasing, and

(iii) R (q|M) = R (q; α0).
By the standard argument, the incentive compatibility condition is equivalent

to that
α0 (q) is increasing in q and U (q; q|M) =

∫ q

0
α0 (q̃) dq̃.
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Since
∫ q

0 α0 (q̃) dq̃ = qα0 (q)− (p (q)− αr (q)) ,

R (q|M) = p (q)− ar (q)
1− q
1− γ

= qα0 (q) + αr (q)−
∫ q

0
α0 (q̃) dq̃− ar (q)

1− q
1− γ

= qα0 (q) +
q− γ

1− γ
αr (q)−

∫ q

0
α0 (q̃) dq̃.

Observe that R (0) ≤ 0. Therefore, if q = 0, then the seller chooses α0 (q) =

αr (q) = 0. Next, if q ∈ (0, γ), then since q−γ
1−γ < 0, αr (q) = 0. If q = γ, R (γ|M)

does not depend on αr (q). Therefore, αr (q) = 1− α0 (q). Similarly, if q ∈ (γ, 1],
then since q−γ

1−γ > 0, αr (q) = 1− α0 (q). We thus can conclude that

max
M∈M

min
F∈F

V (M; F) = max
α0∈A

R (π; α0) .

Take α∗0 (q) ∈ arg maxα0∈A R (π; α0), M∗, and the the lower linear envelope
function of R (q; α∗0) at q = π that has the steepest slope denoted by L (q) ≡
χ (q−V). Observe that supp {F∗} ⊂ Q ≡ {q : R (q; α∗0) = L (q)} for any F∗ ∈
arg maxF∈F minF∈F V (M∗; F), and hence α0 (q) is strictly increasing at q only if
q ∈ supp {F∗}. Therefore implies R (q; α∗0) = max {0, L (q)} for all q ∈ [0, 1].

By (8), R (q; α∗0) = χ (q−V) on q ∈ [V, 1] implies that for some k,

α∗0 (q) =

{
χ ln q

V q ∈ [V, γ]

1− (1− γ) χ + k× (− (1− q))−
1
γ q ∈ [γ, 1]

.

However, since (− (1− q))−
1
γ is not real for any q ∈ [γ, 1], we have k = 0. Thus

χ ln γ
V = 1− (1− γ) χ, or χ = 1

1−γ−ln V
γ

, equivalently. We thus have maxα0∈A R (π; α0) =

maxV∈[0,γ]
π−V

1−γ−ln V
γ

.

B Proofs for Section 4 (Feasible Outcomes)

Proof of Theorem 7: We start with the case where γ ≥ 1−
√

1− π. Consider
FV∗1 (q), where FV is defined in (5) and V∗1 in Theorem 2. FV∗1 (q) is illustrated

in Figure 5(b), and sup(p,r) V
(
(p, r) |FV∗1

)
= V∗1 . Notice that V

(
(V∗1 , 0) |FV∗1

)
=

V∗1 . Furthermore, since supp
{

FV∗1 (q)
}
= [V∗1 , γ] ∪ {1}, the buyer’s payoff when

(p, r) = (V∗1 , 0) is π −V∗1 . We thus have U∗1 = π −V∗1 .
Next, we consider the case where γ < 1−

√
1− π. Define

F∗ (q) ≡





0 q ∈ [0, V∗1 )
1− γ q = [V∗1 , 1)
1 q = 1

.
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The seller’s profit from offering (V∗1 , 0) is V∗1 = π−γ
1−γ . The seller’s profit from

(p, r) , r > 0 is bounded from V∗1 . To see this, notice that if q̃ (p, r) > V∗1 , then

V ((p, r) |F∗) = γp ≤ γ ≤ π − γ

1− γ
= V∗1 ,

and if q̃ (p, r) ≤ V∗1 , then since q̃ (p, r) = p−r
1−r ,

V ((p, r) |F∗) = p− (1− γ) (1− q̃ (p, r))
(

p− q̃ (p, r)
1− q̃ (p, r)

+
γ

1− γ

)
(increasing in q̃ (p, r) )

≤ p− (1− γ) (1−V∗1 )
(

p−V∗1
1−V∗1

+
γ

1− γ

)
(increasing in p)

≤ 1− (1− γ) (1−V∗1 )
(

1
1− γ

)
= V∗1 .

Therefore, (V∗1 , 0) ∈ arg max(p,r) V ((p, r) |F∗). Since supp {F∗ (q)} = {V∗1 , 1}, the
buyer’s payoff when (V∗1 , 0) is π −V∗1 .

Consider the following set of offer-dependent signal distributions
{

F∗(p,r)

}
. If

(p, r) = (V∗3 , 0), then F∗(p,r) has an atom of size one at q = π, i.e., an uninformative

signal; and if (p, r) 6= (V∗3 , 0), then F∗(p,r) ∈ arg minF(p,r)∈F V
(
(p, r) |F(p,r)

)
. Then

V
(
(V∗3 , 0) |F∗

(V∗3 ,0)

)
= V∗3 and V

(
(p, r) |F∗(p,r)

)
≤ V∗3 for all (p, r) 6= (V∗3 , 0) by

Theorem 1. Furthermore, under F(V∗3 ,0), the buyer’s posterior is q = π > V∗3 the
buyer’s payoff is π −V∗3 .
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