Information Advantage in Tullock Contests

A. Aiche†, E. Einy†, O. Haimanko†, D. Moreno‡, A. Sela†, and B. Shitovitz∗

March 2017

Abstract

We study the impact of an information advantage on the equilibrium payoffs and efforts in Tullock contests where the common value of the prize and the common cost of effort are uncertain. It is shown that if the cost of effort is linear then a player’s information advantage is rewarded in equilibrium. We then study two-player contests with state-independent convex costs from the family \(c(x) = x^\alpha\). The players’ expected costs of effort turn out to be identical, regardless of their information endowments; but when a player has an information advantage, his expected effort never exceeds that of his opponent. In classic Tullock contests (\(\alpha = 1\)), both players are shown to exert the same expected effort, although when a player has an information advantage his ex-ante probability to win is lower, and the total effort in the information advantage scenario is smaller than with symmetric information. Finally, we note that all-pay auctions do not necessarily provide better incentives to exert effort than do Tullock contests.

JEL Classification: C72, D44, D82.

†Department of Economics, University of Haifa.
‡Department of Economics, Ben-Gurion University of the Negev.
§Departamento de Economía, Universidad Carlos III de Madrid.
1 Introduction

Tullock contests (see Tullock 1980) are perhaps the most widely studied models in the literature on imperfectly discriminating contests. In a Tullock contest each player’s probability of winning the prize is the ratio of the effort he exerts and the total effort exerted by all players. This paper belongs to a relatively recent but growing strand of this literature that concerns Tullock contests with incomplete information. Specifically, we study Tullock contests in which the players’ common value for the prize as well as their common cost of effort depend on the state of nature. Players have a common prior belief, but upon the realization of the state of nature (and before taking action) each player obtains some information pertaining to the realized state. The interim information endowment of each player at the moment of taking action is described by a σ-field of subsets of the state space, which are known as events: the player knows which events in his information field have occurred, and which have not, once the state is realized. The information fields may differ across players. This representation of players’ uncertainty and information is natural, and encompasses the most general structures. In particular, it includes Harsanyi’s model of Bayesian games.

In this setting, we show that Tullock contests with linear costs reward information advantage: if some player i has more information about the uncertain parameters of the game than another player j, then the expected payoff of player i is greater than or equal to that of player j. This result holds for any two players with rankable information fields, regardless of the information endowments of the other players. The arguments behind our result rely on the proof of the theorem of Einy et al. (2002), which shows that in any Bayesian Cournot equilibrium of an oligopolistic industry with linear costs a firm’s information advantage is rewarded.

We then proceed to study the impact of information advantage on effort. We identify a system of equations that all equilibria must satisfy. Using this system we establish a number of properties of the equilibria of these contests. First, we explicitly calculate the players’ effort in classic Tullock contests (i.e., those with state-independent linear costs) in which players have symmetric information. It turns out that in equilibrium (which is unique, interior and symmetric), a player’s expected effort is invariant of the level of information. Further, while each player’s expected effort decreases with the number of players, the expected total effort increases.
Next we derive properties of two-player contests in which the cost of effort is a convex function of the form $c(x) = x^\alpha$. We first show that regardless of the players’ information, in any equilibrium their expected costs of effort are equal. Using this result, we show that the expected effort of the player with an information advantage is less or equal to that of his disadvantaged opponent. The comparison is only strict for strictly convex costs: in fact, in classic Tullock contests, i.e., when $\alpha = 1$, both players exert the same expected effort under any given information endowments (that need not be comparable), although having an information advantage results a lower ex-ante probability to win compared to the opponent. With comparable information endowments, a shift towards symmetry is shown to increase effort: the two players exert no less effort when they have symmetric information compared to the information advantage case. We also present examples showing that these results do not generalize to contests with more than two players.

Finally, we study whether all-pay auctions provide better incentives for players to exert effort than do Tullock contests. Einy et al. (2017) characterize the unique equilibrium of a two-player common-value all-pay auction, which is in mixed strategies, and provide an explicit formula that allows us to compute the players’ total effort. We show that the sign of the difference between the total effort exerted by players in an all-pay auction and in a Tullock contest is ambiguous.

Relation to the literature

The study of Tullock contests under incomplete information is relatively sparse, however. Fey 2008 and Wasser 2011 study rent-seeking games under asymmetric information. Einy
et al. (2015) show that under standard assumptions Tullock contests with asymmetric information have pure strategy Bayesian Nash equilibria, although they neither characterize equilibrium strategies nor do they study their properties.

More closely related to the topic of the present paper are the articles of Warneryd (2003) and Einy et al. (2017a). Warneryd (2003) studies two-player Tullock contests in which the players’ marginal cost of effort is constant and state-independent, and the value is a continuous random variable. In this setting, Warneryd considers the information structures arising when each player either observes the value, or has only the information provided by the common prior. Our results for two-player contests extend some of Warneryd’s results to contests with the most general information structures. Moreover, we obtain results for two-player contests where the cost functions are non-linear and the players information endowments are not rankable, as well as for contests with more than two players. Additionally, we study the impact of information on payoffs and show that information advantage is rewarded in contests with any number of players and general information structures. Einy et al. (2017a) also study the impact of information in Tullock contests, but their information is public and the attention is restricted to the symmetric information case.

As for the comparison of the outcomes generated by Tullock contests and all-pay auctions, Fang (2002), Epstein, Mealem and Nitzan (2011) study this issue under complete information, and Dubey and Sahi (2012) consider an incomplete information binary setting. Common-value first-price and second-price auctions have been studied by Einy et al. (2001, 2002), Forges and Orzach (2011), and Malueg and Orzach (2009, 2012), while all-pay auctions have been studied by Einy et al. (2016, 2017) and Warneryd (2012).

The rest of the paper is organized as follows: Section 2 describes our setting. Section 3 studies the impact of information on payoffs, and Section 4 – its impact on efforts. Section 4 is dedicated to the question of whether Tullock contests or all-pay auctions are better in providing incentives to exert effort. Some technical parts of our proofs appear in the Appendix.

2 Common-Value Tullock Contests

A group of players \(N = \{1, \ldots, n\} \), with \(n \geq 2 \), compete for a prize by exerting effort. Players’ uncertainty about the value of the prize and the cost of effort is described by a probability
space \((\Omega, \mathcal{F}, p)\), where \(\Omega\) is the set of states of nature, \(\mathcal{F}\) is a \(\sigma\)-field of subsets of (or events in) \(\Omega\), and \(p\) is a probability measure on \((\Omega, \mathcal{F})\) representing the players’ common prior belief. Players’ common value for the prize is an \(\mathcal{F}\)-measurable random variable \(V: \Omega \to (0, \tau]\), for some \(\tau > 0\). Players’ common cost of effort is given by \(c: \mathbb{R}_+ \to \mathbb{R}_+\), which is a differentiable, strictly increasing and concave function satisfying \(c(0) = 0\). We assume that the private information of every player is described by a \(\sigma\)-subfield \(\mathcal{F}_i\) of \(\mathcal{F}\). This means that, for any event \(A \in \mathcal{F}_i\), player \(i\) knows whether the realized state of nature is contained in \(A\); in particular, if \(\mathcal{F}_i\) is generated by a finite or countably infinite partition of \(\Omega\), then \(i\) knows the exact element of the partition containing the realized state.

A common-value Tullock contest (to which we will henceforth refer as a Tullock contest) starts by a move of nature that selects a state \(\omega\) from \(\Omega\), of which every player \(i\) has partial knowledge (via \(\mathcal{F}_i\)). Then the players simultaneously choose their effort levels, \(x = (x_1, \ldots, x_n) \in \mathbb{R}_+^n\). The prize is awarded to the players in a probabilistic fashion, using a contest contest success function \(\rho: \mathbb{R}_+^n \to \Delta^n\), where \(\Delta^n\) is the \(n\)-simplex. Specifically, if \(x \in \mathbb{R}_+^n \setminus \{0\}\), then the probability that player \(i \in N\) receives the prize is

\[
\rho_i(x) = \frac{x_i}{\sum_{k=1}^n x_k},
\]

whereas if \(x = 0\), i.e., if no player exerts effort, then the prize is allocated according to some fixed probability vector \(\rho(0) \in \Delta^n\). Hence, the payoff of player \(i \in N\) is

\[
u_i(\omega, x) = \rho_i(x)V(\omega) - c(x_i).
\]

A Tullock contest defines a Bayesian game in which a pure strategy for player \(i \in N\) is an \(\mathcal{F}_i\)-measurable integrable function \(X_i: \Omega \to \mathbb{R}_+\), which describes \(i\)’s choice of effort in each state of nature, conditional on his private information. We denote by \(S_i\) the set of strategies of player \(i\), and by \(S = \times_{i=1}^n S_i\) the set of strategy profiles. Given a strategy profile \(X = (X_1, \ldots, X_n) \in S\) we denote by \(X_{-i}\) the profile obtained from \(X\) by suppressing the strategy of player \(i\). Throughout the paper we restrict attention to pure strategies.

A strategy profile \(X = (X_1, \ldots, X_n)\) is a (Bayesian Nash) equilibrium if for every \(i \in N\) and every \(X'_{i} \in S_i\),

\[
E[u_i(\cdot, X(\cdot))] \geq E[u_i(\cdot, X_{-i}(\cdot), X'_{i}(\cdot))];
\]

\[1\] In some of our results the cost can be allowed to depend on the state of nature, see Remark 3.

\[2\] When clear from the context, \(0\) will denote the zero vector in \(\mathbb{R}^n\).
or equivalently, if for every $i \in N$ and every $X'_i \in S_i$,

$$E[u_i(\cdot, (X(\cdot))) | \mathcal{F}_i] \geq E[u_i(\cdot, (X_{-i}(\cdot), X'_i(\cdot)) | \mathcal{F}_i]$$

(4)

almost everywhere on Ω, where $E[f | \mathcal{F}_i]$ denotes a random variable which is (a version of) the conditional expectation of an \mathcal{F}-measurable random variable f with respect to the σ-field \mathcal{F}_i.\footnote{For a formal definition of $E[f | \mathcal{F}_i]$ see, e.g., Borkar (1995).}(Henceforth, when an inequality $f \geq g$ or an equality $f = g$ hold for two random variables f, g almost everywhere on Ω, the reference to Ω will be omitted.) Einy et al. (2015) provide conditions that imply the existence of equilibrium in the contests that we consider, at least when the information fields are generated by finite or countably infinite partitions of Ω.

Remark 1. If X is an equilibrium then $\sum_{i \in N} X_i > 0$.

Proof. Assume that the contrary occurs in some equilibrium X. Then there exists a positive-measure set $B \in \mathcal{F}$ such that $X_1 = \ldots = X_n = 0$ on B. Let i be a player for whom $\rho_i(0) \leq \frac{1}{2}$. By \mathcal{F}_i-measurability of X_i, there is $A_i \in \mathcal{F}_i$ such that $X_i = 0$ on A_i and $B \subset A_i$. Consider a strategy $X'_i = \varepsilon \cdot 1_{A_i} + X_i \cdot 1_{\Omega \setminus A_i} \in S_i$ for some $\varepsilon > 0$. Notice that $\rho_i(X) \leq \rho_i(X_{-i}, X'_i)$ on A_i, and that $\rho_i(X_{-i}, X'_i) = 1$ on B. Thus, by switching from X_i to X'_i, player i improves his expected reward by at least $\frac{1}{2} E[V | B] \cdot p(B)$, while incurring an expected cost increase of $c(\varepsilon) \cdot p(A_i)$. As $c(0) = 0$ and c is continuous at 0, the second expression is smaller than the first for a sufficiently small ε, which shows that the deviation to X'_i is profitable in expectation, in contradiction to X being an equilibrium. \blacksquare

By Remark 1, the vector $\rho(0) \in \Delta^n$ used to allocate the prize when no player exerts effort does not affect the set of equilibria. Hence we may describe a Tullock contest by a collection $T = (N, (\Omega, \mathcal{F}, p), \{\mathcal{F}_i\}_{i \in N}, V, c)$. Contests in which $c(x) = x$ will be called classic Tullock contests.

3 Information Advantage and Payoffs

Our first result is concerned with the natural question of whether an information advantage is reflected in equilibrium payoffs. Formally, player $i \in N$ is said to have an information
advantage over player $j \in N$ if $F_j \subset F_i$. Thus, the information of i on the realized state of nature is never less precise that that of j whenever player j knows that the realized $\omega \in \Omega$ is contained in some $A \in F_j$, there exists $B \subset A, B \in F_i$, such that i knows that ω is contained in B.

Proposition 1 and Remark 3 will show that information advantage is rewarded in Tullock contests with linear costs: the expected payoff of a player is never below that of another player with less information.\(^4\) Proposition 1 is proved by observing a formal equivalence between a Tullock contest and a Cournot oligopoly with asymmetric information, and by appealing to (the proof of) a result of Einy et al. (2002) which shows that the (Bayesian Cournot) equilibria of such industries have the desired property.

Proposition 1. Consider a classic Tullock contest and assume that it has an equilibrium $X = (X_1, ..., X_n)$ in which $\sum_{j=1}^{n} X_j \geq a$ for some $a > 0$. If some player i has an information advantage over some other player j, then $E[u_i(\cdot, X(\cdot)) \geq E[u_j(\cdot, X(\cdot))]$.

Proof. Let $(N, (\Omega, F, p), (F_i)_{i \in N}, V, c)$ be a Tullock contest. For $X = (X_1, ..., X_n) \in S$ and $\omega \in \Omega$, the payoff of each player $i \in N$ may be written as

$$u_i(\omega, X(\omega)) = \frac{X_i(\omega)}{\sum_{j=1}^{n} X_j(\omega)} V(\omega) - c(X_i(\omega))$$

$$= P(\omega, \sum_{j=1}^{n} X_j(\omega))X_i(\omega)) - C(\omega, X_i(\omega)),$$

where the functions $P : \Omega \times \mathbb{R}_{++} \rightarrow \mathbb{R}_{+}$ and $C : \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ are defined as

$$P(\omega, x) = \frac{V(\omega)}{x}, \text{ and } C(\omega, x) = c(x). \quad (5)$$

Thus, if X is an equilibrium of the contests, then X is an equilibrium of the oligopolist industry $(N, (\Omega, F, p), (F_i)_{i \in N}, P, C)$, where P is the inverse market demand and C is the firms’ cost function.

Einy et al. (2002) showed that information advantage is rewarded in any equilibrium of an oligopolist industry under certain conditions on the inverse demand function and costs.

\(^4\)It has already been observed by Warneryd (2003, Proposition 7) that the informed player obtains a higher expected payoff in a two-player classic Tullock contest with extreme information asymmetry, where player 2 is completely informed of the value while player 1 only knows the prior distribution of a continuous V. Our result is significantly more general in scope, as it is not bound by a two-player, extreme asymmetry, or a continuous distribution assumptions.
Some of the conditions are not satisfied, however, by the function P in (5). Fortunately, the proof of Einy et al. can be utilized in the present case too, provided it is shown that, for every $i \in N$,

$$
E \left[1_{X_i > 0} \times \frac{d}{dX_i} u_i(\cdot, X(\cdot)) \mid \mathcal{F}_i \right] = 0
$$

(equality (6) would immediately yield (2.6) on p. 157 in Einy et al. (2002), from which point on their proof would apply without change). We will establish (6) in the Appendix.

It is important to note that Proposition 1 does not involve any assumption about the information of the players whose information fields are not being compared: a player’s information advantage over another player is rewarded regardless of the information endowments of the other players. That is, the conclusion of Proposition 1 holds whenever two players have rankable information.

Remark 2 shows that the qualification in Proposition 1 on the sum of equilibrium efforts being bounded above zero holds under some general conditions. The proof of this remark is given in the Appendix.

Remark 2. Let X be an equilibrium of a Tullock contest. If either

(a) $N = \{1, 2\}$, one player has an information advantage over the other, and $v = \inf V > 0$,

or

(b) for every $i \in N$ the σ-field \mathcal{F}_i is finite,

then there exists $a > 0$ such that $\sum_{i \in N} X_i \geq a$.

We finally note that the constant marginal cost of effort in the contests in Proposition 1 may be allowed to depend on the state of nature.

Remark 3. The claim in Proposition 1 holds also for a contest in which the cost of effort, for any $(\omega, x) \in \Omega \times R_+$, takes the form $W(\omega) \cdot x$, where $W : \Omega \rightarrow [\underline{w}, \overline{w}]$ is \mathcal{F}-measurable and $0 < \underline{w} \leq \overline{w} < \infty$. Indeed, after dividing all payoffs by the same positive constant $E[W]$, such a contest is obviously equivalent in terms of the expected payoffs to a classic Tullock contest in which the value V' is the random variable $V' = \frac{V}{W}$, and a probability measure p' on (Ω, \mathcal{F}) is given by $dp'(\omega) = \frac{W(\omega)}{E[W]} dp(\omega)$.

8
4 Information Advantage and Effort

In this section we study the impact of an information advantage, and of a change in players’ information, on the efforts that the players exert in Tullock contests.

The following lemma, proved in the Appendix, provides a system of equations that characterizes the equilibria of Tullock contests. This system will be useful to derive properties of these equilibria.

Lemma 1. Assume that $X = (X_1, \ldots, X_n)$ is an equilibrium of a Tullock contest. Then\(^5\) for all $i \in N$,

$$E \left[\frac{X_i \bar{X}_{-i}}{(X_i + \bar{X}_{-i})^2} V \mid \mathcal{F}_i \right] = X_i c'(X_i),$$

where $\bar{X}_{-i} = \sum_{j \in N \setminus \{i\}} X_j$.

Einy et al. (2017a) study the impact of public information on payoffs and effort in Tullock contests with symmetric information. Their Theorem 2.1 establishes that these contests have a unique equilibrium, which is symmetric and interior. For classic Tullock contests, they show that changes in the information available to the players have no impact on the expected effort they exert (Proposition 5.1). Using Lemma 1 we explicitly calculate the equilibrium efforts in these contests, which leads to an interesting observation that each individual’s expected effort and total expected effort are both independent of the players’ information, and that, while each individual’s expected effort decreases with the number of players, the total effort increases with the number of players.

Proposition 2. In the unique equilibrium of a classic Tullock contests in which the players have symmetric information, i.e., $\mathcal{F}_i = \mathcal{G}$ for all $i \in N$, where \mathcal{G} is a σ-subfield of \mathcal{F}, any player’s effort is a random variable $X = (n - 1) E[V \mid \mathcal{G}] / n^2$. Hence the expected effort of each player, $E[X] = (n - 1) E[V] / n^2$, as well as the expected total effort, $E[nX] = (n - 1) E[V] / n$, are independent of \mathcal{G}. Clearly, $E[X]$ (resp., $E[nX]$) decreases (resp., increases) with the number of players.

Proof. Assume that $\mathcal{F}_i = \mathcal{G}$ for all $i \in N$, and denote by X the player’s strategy in the unique and symmetric equilibrium (see Theorem 2.1 of Einy et al. (2017a)). Since $c'(x) \equiv 1$,

\(^5\)Notice that the random variable $\frac{X_i \bar{X}_{-i}}{(X_i + \bar{X}_{-i})^2}$ is well-defined almost everywhere, by Remark 1.
Lemma 1 implies
\[X = E \left[\frac{(n - 1) X^2}{(X + (n - 1)X)^2} V \mid \mathcal{G} \right] = \frac{n - 1}{n^2} E[V \mid \mathcal{G}] . \]
Thus
\[E[nX] = nE[X] = n \left(\frac{n - 1}{n^2} E[E[V \mid \mathcal{G}]] \right) = \frac{n - 1}{n} E[V] . \]

Proposition 3 below shows that, in any equilibrium of a two-player Tullock contest in which the players’ cost of effort is a convex function from the family \(c(x) = x^\alpha \), the players’ expected costs of effort coincide. (Example 1 in what follows will make clear that Proposition 3 does not extend to contests with more than two players.) Note that Proposition 3 does not involve any assumption about the players’ information endowments; in particular, it holds when one player has information advantage over the other, but such a condition is not necessary.

Proposition 3. Consider a two-player Tullock contest in which the players’ cost of effort is \(c(x) = x^\alpha \), where \(\alpha \in [1, \infty) \). Then, in any equilibrium \((X_1, X_2)\),
\[E[c(X_1)] = E[c(X_2)] . \]

Proof. Let \((X_1, X_2)\) be a equilibrium. Since \(xc'(x) = x(\alpha x^{\alpha - 1}) = \alpha c(x) \), Lemma 1 and the law of iterated expectation (see, e.g., Theorem 34.4 of Billingsley (1995)) imply
\[
E[c(X_1)] = \frac{1}{\alpha} E[X_1 c'(X_1)]
\]
\[
= \frac{1}{\alpha} E \left[E \left[\frac{X_1 X_2}{(X_1 + X_2)^2} V \mid \mathcal{F}_1 \right] \right]
\]
\[
= \frac{1}{\alpha} E \left[\frac{X_1 X_2}{(X_1 + X_2)^2} V \right]
\]
\[
= \frac{1}{\alpha} E \left[E \left[\frac{X_2 X_1}{(X_2 + X_1)^2} V \mid \mathcal{F}_2 \right] \right]
\]
\[
= \frac{1}{\alpha} E \left[\frac{X_2 X_1}{(X_2 + X_1)^2} V \right]
\]
\[
= \frac{1}{\alpha} E[c(X_2)]
\]
\[
= E[c(X_2)] . \]

Our next remark states an obvious but interesting implication of Proposition 3 for two-player classic Tullock contests. It turns out that in any equilibrium of such contests both
Remark 4. In any equilibrium \((X_1, X_2)\) of a two-player classic Tullock contest, \(E[X_1] = E[X_2]\).

Our next proposition establishes that the expected effort of the player with an information advantage is less than or equal to that of his opponent when the convex cost function belongs to the family \(c(x) = x^\alpha\). This result is an implication of Jensen’s inequality. Moreover, it is easy to see that the expected effort of the player with an information advantage is strictly smaller than that of his opponent when \(\alpha > 1\), except in equilibria in which the strategies of the two players coincide almost everywhere.

Proposition 4. Consider a two-player Tullock contest in which the players’ cost of effort is \(c(x) = x^\alpha\), where \(\alpha \in [1, \infty)\), and in which player 2 has an information advantage over player 1. Then, in any equilibrium \((X_1, X_2)\),

\[
E[X_1] \geq E[X_2].
\]

Proof. Let \((X_1, X_2)\) be an equilibrium. Since \(xc'(x) = \alpha xc(x) = \alpha x^\alpha\), Lemma 1 and the assumption that \(\mathcal{F}_1 \subset \mathcal{F}_2\) imply the following, using the law of iterated expectation:

\[
X_1^\alpha = E \left[\frac{X_1X_2V}{\alpha (X_1 + X_2)^2} \mid \mathcal{F}_1 \right] = E \left[E \left[\frac{X_2X_1V}{\alpha (X_1 + X_2)^2} \mid \mathcal{F}_2 \right] \mid \mathcal{F}_1 \right] = E \left[X_2^\alpha \mid \mathcal{F}_1 \right].
\]

Thus, using the conditional Jensen’s inequality (see Corollary 3.1.1 (ii) in Borkar (1995)), the law of iterated expectation and \(\mathcal{F}_1\)-measurability of \(X_2\), we obtain

\[
E[X_1] = E[(X_1^\alpha)^{\frac{1}{\alpha}}] \\
= E[(E[X_2^\alpha \mid \mathcal{F}_1])^{\frac{1}{\alpha}}] \\
\geq E[(E[X_2 \mid \mathcal{F}_1]^\alpha)^{\frac{1}{\alpha}}] \\
= E[E[X_2 \mid \mathcal{F}_1]] \\
= E[X_2].
\]

\(^6\)The equality of the expected effort in two-player classic Tullock contests has been known in the extreme information asymmetry setting (see Lemma 1 in Warneryd (2003)), where \(\mathcal{F}_1 = \{\varnothing, \Omega\}\) and \(\mathcal{F}_2\) is the minimal \(\sigma\)-field w.r.t. which a continuously distributed \(V\) is measurable. In contrast, the claim in Remark 4 involves no assumptions on the distribution of the value or the information endowments.
Example 1 below identifies a three-player classic Tullock contest with a unique equilibrium, in which a player with an information disadvantage exerts less effort than his opponents. Hence, neither of Propositions 3, 4 and Remark 4 extends to Tullock contests with more than two players.

Example 1 Consider a three-player classic Tullock contest in which \(\Omega = \{\omega_1, \omega_2\} \) and \(p(\omega_1) = 1/8 \), and the value is \(V(\omega_1) = 1 \) and \(V(\omega_2) = 8 \). Assume that players 2 and 3 observe the value prior to taking action, but player 1 has only the prior information. The unique equilibrium of this contest is \(X \) given by \((X_1(\omega_1), X_1(\omega_2)) = (168/121, 168/121) \) and \((X_2(\omega_1), X_2(\omega_2)) = (X_3(\omega_1), X_3(\omega_2)) = (0, 224/121) \). Hence
\[
E[X_1] = \frac{168}{121} < \frac{7}{8} \cdot \frac{224}{121} = E[X_2] = E[X_3],
\]
i.e., the expected effort of player 1 is less than those of players 2 and 3. (One can construct an example with this feature in which the equilibrium is interior, but the calculations involved are more cumbersome.)

Our next proposition shows that in two-player classic Tullock contests players exert, in expectation, less effort (and hence capture a larger share of the surplus) when one of them has an information advantage compared to the scenario when they are symmetrically informed.\(^7\)

Proposition 5. In any interior equilibrium \((X_1, X_2) \) of a two-player classic Tullock contest in which player 2 has information advantage over player 1, the expected total effort \(E[X_1] + E[X_2] \) never exceeds \(E[V]/2 \), that is the expected total effort in a symmetric information scenario.

Proof. Let \((X_1, X_2) \) be an interior equilibrium, i.e. \(X_i > 0 \) for \(i \in \{1, 2\} \). By Lemma 1
\[
E \left[\frac{X_1 X_2 V}{(X_1 + X_2)^2} \mid \mathcal{F}_2 \right] = X_2.
\]
Since both \(X_1 \) and \(X_2 \) are \(\mathcal{F}_2 \)-measurable (as \(\mathcal{F}_1 \subset \mathcal{F}_2 \)) and \(X_2 > 0 \), this equation may be written as
\[
1 = E \left[\frac{X_1 V}{(X_1 + X_2)^2} \mid \mathcal{F}_2 \right] = X_1 E \left[\frac{V}{(X_1 + X_2)^2} \mid \mathcal{F}_2 \right] = X_1 E \left[\frac{V}{(X_1 + X_2)^2} \mid \mathcal{F}_2 \right],
\]
\(^7\)Warneryd (2003) makes a similar claim in his Proposition 5, but in the context of extreme information asymmetry and for a continuously distributed \(V \).
\[X_2 = \sqrt{X_1 \sqrt{E[V \mid F_2]}} - X_1. \] (7)

Also by Lemma 1,
\[E \left[\frac{X_1 X_2 V}{(X_1 + X_2)^2} \mid F_1 \right] = X_1, \]
and since \(X_1 > 0 \) is \(F_1 \)-measurable, we may write this equation as
\[E \left[\frac{X_2 V}{(X_1 + X_2)^2} \mid F_1 \right] = 1. \]

By the law of iterated expectation
\[E \left[\frac{X_2 V}{(X_1 + X_2)^2} \mid F_1 \right] = E \left[E \left[\frac{X_2 V}{(X_1 + X_2)^2} \mid F_2 \right] \mid F_1 \right]. \]

Substituting \(X_2 \) from equation (7) and recalling that \(X_1 \) is \(F_2 \)-measurable, we get
\[
1 = E \left[\frac{\sqrt{X_1 \sqrt{E[V \mid F_2]}} - X_1}{\left(X_1 + \left(\sqrt{X_1 \sqrt{E[V \mid F_2]}} - X_1 \right) \right)^2} V \right] \mid F_1 \\
= E \left[\frac{V}{\sqrt{X_1 \sqrt{E[V \mid F_2]}}} - \frac{V}{E[V \mid F_2]} \mid F_1 \right] \\
= \frac{1}{\sqrt{X_1}} E \left[E[V \mid F_2] \mid F_1 \right] - E \left[E[V \mid F_2] \mid F_1 \right] \\
= \frac{E \left[\sqrt{E[V \mid F_2] \mid F_1} \right]}{\sqrt{X_1}} - 1.
\]

Hence
\[\sqrt{X_1} = \frac{E \left[\sqrt{E[V \mid F_2] \mid F_1} \right]}{2}. \] (8)

Therefore, since \(F_1 \subset F_2 \), the conditional Jensen’s inequality implies
\[E[X_1] = \frac{E \left[\left(\sqrt{E[V \mid F_2] \mid F_1} \right)^2 \right]}{4} \leq \frac{E[V]}{4}. \]

Since \(E(X_2) = E(X_1) \) by Remark 4,
\[E[X_1] + E[X_2] \leq \frac{E[V]}{2}. \]

By Proposition 2, \(\frac{E[V]}{2} \) is precisely the expected total effort of the two players in a symmetric information scenario.

The following remark is an interesting observation implied by the equations (7) and (8) derived in the proof of Proposition 5.

Remark 4. Consider a two-player classic Tullock contest in which player 2 observes the state of nature and player 1 has only the prior information, i.e., \(\mathcal{F}_2 = \mathcal{F} \) and \(\mathcal{F}_1 = \{\Omega, \emptyset\} \). If the contest has an interior equilibrium, then it is given by \(X_1 = (E[\sqrt{V}])^2/4 \), and \(X_2 = E[\sqrt{V}] \left(V/2 - E[\sqrt{V}]/4 \right) \).

Our last result establishes that in a two-player classic Tullock contest a player with information advantage tends to win the prize less often than his opponent, i.e., his ex-ante probability to win the prize is less or equal to \(\frac{1}{2} \).

Proposition 6. In any interior equilibrium \((X_1, X_2)\) of a two-player classic Tullock contest in which player 2 has information advantage over player 1,

\[
E[\rho_2(X_1, X_2)] \leq \frac{1}{2} \leq E[\rho_1(X_1, X_2)].
\]

Proof. Let \((X_1, X_2)\) be an interior equilibrium, i.e. \(X_i > 0 \) for \(i \in \{1, 2\} \). Using the equations (7) and (8) derived in the proof of Proposition 5 we may write

\[
E[\rho_1(X_1, X_2)] = E \left[\frac{X_1}{X_1 + X_2} \right] = E \left[\frac{X_1}{X_1 + \sqrt{X_1} \sqrt{E[V | \mathcal{F}_2]} - X_1} \right] = E \left[\frac{\sqrt{X_1}}{\sqrt{E[V | \mathcal{F}_2]}} \right] = \frac{1}{2} E \left[\frac{E \left[\sqrt{E[V | \mathcal{F}_2]} | \mathcal{F}_1 \right]}{\sqrt{E[V | \mathcal{F}_2]}} \right] \geq \frac{1}{2},
\]

where the last inequality follows from the conditional Jensen’s inequality.

\(^8 \)In a related result of Warneryd (2003), obtained in the extreme asymmetry setting with a continuously distributed \(V \) (see his Proposition 2), the fully informed player’s ex-ante probability to win is shown to be less than \(\frac{1}{2} \) even under the assumption that all efforts enter the success function in (1) under a rescaling \(x_j \leftrightarrow \phi(x_j) \), for a family of "scoring functions" \(\phi \) that includes the identity function.
Our last example exhibits an eight-player classic Tullock contest in which a player who has an information advantage over the other players wins the prize more frequently, which shows that Proposition 6 does not extend to contests with more than two players.

Example 2 Consider an eight-player classic Tullock contest in which \(\Omega = \{\omega_1, \omega_2\} \) and \(p(\omega_1) = 1/2 \). The value is \(V(\omega_1) = 1 \) and \(V(\omega_2) = 2 \). Player 8 observes the value prior to taking action, while other players have only the prior information. The unique equilibrium \(X \) of this contest is given by \(X_1 = \ldots = X_7 = (x, x) \) and \(X_8 = (0, y) \), where

\[
x = \frac{7\sqrt{229} + 139}{1575}, \quad y = \frac{56\sqrt{229} - 238}{1575}.
\]

Thus, the ex-ante probability that player \(i \in \{1, 2, \ldots, 7\} \) wins the prize is

\[
\frac{1}{2} \cdot \left(\frac{1}{7} + \frac{x}{7x + y} \right) = \frac{\sqrt{229} + 37}{420},
\]

whereas the ex-ante probability that player 8 win the prize is

\[
1 - 7 \cdot \left(\frac{\sqrt{229} + 37}{420} \right) = \frac{161 - 7\sqrt{229}}{420} > \frac{\sqrt{229} + 37}{420},
\]

i.e., the player with an information advantage wins the prize more frequently than any of his opponents.

5 Tullock Contests and All-Pay Auctions

Consider a two-player contest in which \(\Omega = \{\omega_1, \omega_2\} \) and \(p(\omega_2) = p \in (0, 1) \). Player 2 observes the value prior to taking action, but player 1 has only the prior information. The value is \(V(\omega_1) = 1 \) and \(V(\omega_2) = v \in (1, \infty) \), and the cost is linear.

Assume that the prize is allocated using a Tullock contest. If \(v < (1 + p)^2 / p^2 \), then the unique equilibrium is interior, and is given by

\[
X_1^{TC} = (x^2, x^2), \quad X_2^{TC} = \left(x(1 - x), x\left(\sqrt{v} - x\right) \right),
\]

where \(x = E[\sqrt{V}] / 2 = [1 + p(\sqrt{v} - 1)] / 2 \). Hence the expected total effort is

\[
TE^{TC} := E[X_1^{TC}] + E[X_2^{TC}] = [1 + p(\sqrt{v} - 1)]^2 / 2,
\]

15
Likewise, if $v \geq (1 + p)^2 / p^2$, then the unique equilibrium is

$$
\hat{X}^{TC}_1 = (\hat{x}^2, \hat{x}^2), \quad \hat{X}^{TC}_2 = (0, \hat{x} (\sqrt{v} - \hat{x})),
$$

where $\hat{x} = p\sqrt{v}/(1 + p)$, and the expected total effort is

$$
\overline{TE}^{TC} := E[\hat{X}^{TC}_1] + E[\hat{X}^{TC}_2] = 2\hat{x} = 2p^2v/(1 + p)^2.
$$

Assume now that the prize is allocated using an all-pay auction. Using the formula provided by Einy et al. (2015b) we compute the players’ total expected effort in the unique equilibrium, which is given by

$$
TE^{APC} = 2(1 - p)p + (1 - p)^2 + p^2v.
$$

Thus,

$$
TE^{APA} - TE^{TC} = 2(1 - p)p + \frac{1}{2} (1 - p - p\sqrt{v})^2 > 0,
$$

i.e., the all-pay auction generates more effort than the Tullock contest when $v < (1 + p)^2 / p^2$.

However, if $v \geq (1 + p)^2 / p^2$, then

$$
TE^{APA} - \overline{TE}^{TC} = (1 - p)(1 + p) - p^2v \left(\frac{2}{(1 + p)^2} - 1 \right),
$$

which may be negative – e.g., take $p = 1/4$ and $v > 375/7$. Therefore, in general, the level of effort generated by these two contests cannot be ranked.

6 Appendix

Proof of Lemma 1

Fix $i \in N$, and for any $\varepsilon \in \mathbb{R}$ define $X_{i,\varepsilon} := \max\{X_i + \varepsilon, 0\} \in S_i$. By applying the interim version (4) of the equilibrium definition,

$$
E[u_i(\cdot, X(\cdot)) \mid \mathcal{F}_i] \geq E[u_i(\cdot, X_{-i}(\cdot), X_{i,\varepsilon}(\cdot)) \mid \mathcal{F}_i],
$$

It follows that, for any $\varepsilon > 0$,

$$
E \left[\frac{u_i(\cdot, X_{-i}(\cdot), X_{i,\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{\varepsilon} \mid \mathcal{F}_i \right] \leq 0 \leq E \left[\frac{u_i(\cdot, X_{-i}(\cdot), X'_{i,-\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{-\varepsilon} \mid \mathcal{F}_i \right].
$$

(9)
As X_i and $X'_{i,-\varepsilon}$ are \mathcal{F}_t-measurable and non-negative, by multiplying the right-hand and the middle term of (9) by $X'_{i,-\varepsilon}$, and then the middle and the left-hand term by X_i, we obtain

$$E \left[X_i (\cdot) \times \frac{u_i(\cdot, X_{-i}(\cdot), X'_{i,-\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{\varepsilon} \mid \mathcal{F}_i \right]$$

(10)

$$\leq 0$$

$$\leq E \left[X'_{i,-\varepsilon}(\cdot) \times \frac{u_i(\cdot, X_{-i}(\cdot), X'_{i,-\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{-\varepsilon} \mid \mathcal{F}_i \right].$$

For every $\omega \in \Omega$ the function $u_i(\omega, x)$ is concave in the variable x_i, and hence for any $\varepsilon > 0^9$

$$\left| X_i (\omega) \times \frac{u_i(\omega, X_{-i}(\omega), X'_{i,-\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{\varepsilon} \right|$$

(11)

$$\leq X_i (\omega) \times \max \left\{ \left| \frac{d}{dx_i} u_i(\omega, X(\omega)) \right|, \left| \frac{d}{dx_i} u_i(\omega, X_{-i}(\omega), X'_{i,-\varepsilon}(\omega)) \right| \right\}$$

(12)

and

$$\left| X'_{i,-\varepsilon}(\omega) \times \frac{u_i(\omega, X_{-i}(\omega), X'_{i,-\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{-\varepsilon} \right|$$

(13)

$$\leq X'_{i,-\varepsilon}(\omega) \times \max \left\{ \left| \frac{d}{dx_i} u_i(\omega, X(\omega)) \right|, \left| \frac{d}{dx_i} u_i(\omega, X_{-i}(\omega), X'_{i,-\varepsilon}(\omega)) \right| \right\}$$

(14)

Since the cost function c is convex and strictly increasing, there exists $b > 0$ such that $c(b) > \pi$. It follows that X_i is bounded from above by b almost everywhere on Ω, as otherwise the expected equilibrium payoff of player i would be negative conditional on some positive-measure event $A_i \in \mathcal{F}_i$, making it profitable for him to deviate to $Y_i = 1_{\Omega \setminus A_i} \times X_i$. Now notice that

$$\frac{d}{dx_i} u_i(\omega, x) = \frac{\pi_{-i}}{(x_i + \pi_{-i})^2} V(\omega) - c'(x_i)$$

(15)

whenever $x_i + \pi_{-i} > 0$. Since $X_i \leq b$ as argued above, it can be easily seen from (15) that the absolute values of the random variables10 $X_i(\cdot) \times \frac{d}{dx_i} u_i(\cdot, X(\cdot))$, $X_i(\cdot) \times \frac{d}{dx_i} u_i(\cdot, X_{-i}(\cdot), X'_{i,-\varepsilon}(\cdot))$, $X'_{i,-\varepsilon}(\cdot) \times \frac{d}{dx_i} u_i(\cdot, X(\cdot))$, and $X'_{i,-\varepsilon}(\cdot) \times \frac{d}{dx_i} u_i(\cdot, X_{-i}(\cdot), X'_{i,-\varepsilon}(\cdot))$ are bounded from above

9The partial derivative $\frac{d}{dx_i} u_i(\omega, x)$ may not be defined in what follows when $x_i + \pi_{-i} = 0$. However, the bounds in (12) and (14) will vanish in such a case, being multiples of $x_i = 0$, and are thus well-defined.

10As the second factor in the random variable may be undertermined (see the previous footnote), each such variable will be defined as 0 when the first factor is 0.
by \(\frac{1}{2}v + c'(b + 1) \) when \(\varepsilon \in (0, 1] \); in particular, the expressions in both (12) and (14) are bounded from above by \(\frac{1}{2}v + c'(b + 1) \) when \(\varepsilon \in (0, 1] \). Additionally, for every \(\omega \in \Omega \)

\[
\lim_{\varepsilon \to 0^+} X_i(\omega) \times \frac{u_i(\omega, X_{i-}(\omega), X'_{i,\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{\varepsilon}
\]

(16)

\[
= \lim_{\varepsilon \to 0^+} X'_{i,-\varepsilon}(\omega) \times \frac{u_i(\omega, X_{i-}(\omega), X'_{i,-\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{-\varepsilon}
\]

\[
= X_i(\omega) \times \frac{d}{d x_i} u_i(\omega, X(\omega)).
\]

Given (11)-(12), (13)-(14), and the boundedness arguments above, (16) leads to the following equalities by the conditional dominated convergence theorem (see Corollary 3.1.1 (iv) in Borkar (1995)):

\[
\lim_{\varepsilon \to 0^+} E \left[X_i(\cdot) \times \frac{u_i(\cdot, X_{i-}(\cdot), X'_{i,\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{\varepsilon} \right] \mathbb{F}_i
\]

(17)

\[
\lim_{\varepsilon \to 0^+} E \left[X'_{i,-\varepsilon}(\cdot) \times \frac{u_i(\cdot, X_{i-}(\cdot), X'_{i,-\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{-\varepsilon} \right] \mathbb{F}_i
\]

\[
= E \left[X_i(\cdot) \times \frac{d}{d x_i} u_i(\cdot, X(\cdot)) \right] \mathbb{F}_i.
\]

From (10) and (17) we now obtain

\[
E \left[X_i(\cdot) \times \frac{d}{d x_i} u_i(\cdot, X(\cdot)) \right] \mathbb{F}_i = 0.
\]

Using (15) this becomes

\[
0 = E \left[\frac{X_i X_{i-}}{(X_i + X_{i-})^2} V - X_i c'(X_i) \right] \mathbb{F}_i
\]

\[
= E \left[\frac{X_i X_{i-}}{(X_i + X_{i-})^2} V \right] \mathbb{F}_i - E [X_i c'(X_i) \mathbb{F}_i] =
\]

\[
E \left[\frac{X_i X_{i-}}{(X_i + X_{i-})^2} V \right] \mathbb{F}_i - X_i c'(X_i),
\]

establishing the lemma. \(\square \)

End of the proof of Proposition 1 (establishing (6)).

We will rely on the proof of the first part of Lemma 1 and the notations therein, that fully apply in the setting of Proposition 1. Note first that for every \(\omega \in \Omega \)

\[
\lim_{\varepsilon \to 0^+} 1_{X_i>0}(\omega) \cdot \frac{u_i(\omega, X_{i-}(\omega), X'_{i,\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{\varepsilon}
\]

(18)

\[
= \lim_{\varepsilon \to 0^+} 1_{X_i>0}(\omega) \cdot \frac{u_i(\omega, X_{i-}(\omega), X'_{i,-\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{-\varepsilon}
\]

\[
= 1_{X_i>0}(\omega) \cdot \frac{d}{d x_i} u_i(\omega, X(\omega)).
\]
Next, for every ω the function $u_i(\omega, x)$ is concave in the variable x_i, and hence for any $\varepsilon \in (0, \frac{a}{2})$ and $\omega \in \Omega$

$$\frac{u_i(\omega, X_{-i}(\omega), X_{i, \varepsilon}(\omega)) - u_i(\omega, X(\omega))}{\varepsilon} \leq \max\left\{ \left| \frac{d}{dx_i} u_i(\omega, X(\omega)) \right|, \left| \frac{d}{dx_i} u_i(\omega, X_{-i}(\omega), X_{i, \varepsilon}(\omega)) \right| \right\}$$

(19)

and

$$\left| \frac{u_i(\omega, X_{-i}(\omega), X_{i, -\varepsilon}(\omega)) - u_i(\omega, X(\omega))}{-\varepsilon} \right| \leq \max\left\{ \left| \frac{d}{dx_i} u_i(\omega, X(\omega)) \right|, \left| \frac{d}{dx_i} u_i(\omega, X_{-i}(\omega), X_{i, -\varepsilon}(\omega)) \right| \right\}.$$

(20)

As X_i is bounded by some b (as argued in the proof of Lemma 1), and $\sum_{i \in N} X_i \geq a$ by assumption (implying in particular that $X_{-i} + X_{i, \varepsilon} \geq \frac{a}{2}$ for $\varepsilon \in (0, \frac{a}{2})$), it follows from (15) that the right-hand side functions in both (19) and (20) are bounded from above by $\frac{4b + 2a}{\varepsilon^2} + c' (b + \frac{a}{2})$ when $\varepsilon \in (0, \frac{a}{2})$. Using this fact, (18), and the conditional dominated convergence theorem, we obtain

$$\lim_{\varepsilon \to 0^+} E \left[1_{X_i > 0} (\cdot) \times \frac{u_i(\cdot, X_{-i}(\cdot), X_{i, \varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{\varepsilon} \mid \mathcal{F}_i \right]$$

(21)

$$= \lim_{\varepsilon \to 0^+} E \left[1_{X_i > 0} (\cdot) \times \frac{u_i(\cdot, X_{-i}(\cdot), X_{i, -\varepsilon}(\cdot)) - u_i(\cdot, X(\cdot))}{-\varepsilon} \mid \mathcal{F}_i \right]$$

$$= E \left[1_{X_i > 0} (\cdot) \times \frac{d}{dx_i} u_i(\cdot, X(\cdot)) \mid \mathcal{F}_i \right].$$

As $1_{X_i > 0}$ is \mathcal{F}_i-measurable and can be extracted from the expectation, by using (9) – with all three terms multiplied by $1_{X_i > 0}$ – and (21), we obtain

$$E \left[1_{X_i > 0} (\cdot) \times \frac{d}{dx_i} u_i(\cdot, X(\cdot)) \mid \mathcal{F}_i \right] = 0,$$

which is the desired (6). □

Proof of the claim in Remark 2.

Case (a) Assume w.l.o.g. that player 2 has an information advantage over player 1. Let $\varepsilon > 0$ be such that $c(3\varepsilon) < \frac{a}{4}$; it exists as $c(0) = 0$ and c is continuous at 0. Also, let $a \in (0, \varepsilon)$ be such that $\frac{2a}{\varepsilon + 2a} < \frac{c(\varepsilon) - c(\frac{a}{4})}{\varepsilon}$; it exists because the left-hand side vanishes when $a \to 0+$, while the right-hand side is positive. Now consider an equilibrium X in the contest. We will show that $X_1 \geq a$. Assume by the way of contradiction that this is false. Then there exists
a positive-measure set $A_1 \in \mathcal{F}_1$ such that $X_1 < a$ on A_1. We will now show that $X_2 \leq \varepsilon$ a.e. on A_1.

Indeed, suppose to the contrary that $X_2 > \varepsilon$ on some positive-measure $A_2 \in \mathcal{F}_2$ which is a subset of A^1. Consider a strategy $X'_2 = \frac{\varepsilon}{2} \cdot 1_{A_2} + X_1 \cdot 1_{\Omega \setminus A_2} \in S_2$. Then, by switching from X_2 to X'_2, player 2 decreases his expected reward by at most $\frac{2a}{\varepsilon + 2a} \cdot p(A_2)$, and simultaneously decreases his expected cost by at least $\left[c(\varepsilon) - c(\frac{\varepsilon}{2}) \right] \cdot p(A_2)$. By the choice of a the first expression is smaller than the second, and hence deviating to X'_2 is, in expectation, profitable for player 2, in contradiction to X being an equilibrium.

It follows that $\max\{X_1, X_2\} \leq \varepsilon$ a.e. on A_1. Let i be a player for whom $E(\rho_i(X) \mid A_1) \leq \frac{1}{2}$, and consider a strategy\footnote{As $A_1 \in \mathcal{F}_1 \subset \mathcal{F}_2$, X''_i is measurable w.r.t. both \mathcal{F}_1 and \mathcal{F}_2.} $X''_i = 3\varepsilon \cdot 1_{A_1} + X_i \cdot 1_{\Omega \setminus A_1} \in S_i$. Notice that $\rho_i(X) \leq \rho_i(X_{-i}, X''_i)$ a.e. on A_1, and that $E(\rho_i(X_{-i}, X''_i) \mid A_1) \geq \frac{3}{4}$ (this is due to the fact that, a.e. on A_1, $\rho_i(X_{-i}, X''_i) \geq \frac{3\varepsilon}{3\varepsilon + \varepsilon^3} = \frac{3}{4}$). Thus, by switching from X_i to X''_i player i improves his expected reward by at least $\frac{1}{4}E(\rho(A_1))$, while incurring an expected cost increase of at most $c(3\varepsilon) \cdot p(A_1)$. By the choice of ε, such a deviation leads to a net gain in the expected utility, in contradiction to X being an equilibrium. We conclude that, indeed, $X_1 \geq a$.

Case (b) As $\sum_{i \in N} X_i$ is measurable w.r.t. $\forall_{i \in N} \mathcal{F}_i$ – the smallest σ-field containing each \mathcal{F}_i (which is, in particular, finite), the probabilities $p \left(\sum_{i \in N} X_i \geq a \right)$ can take only finitely many values in $[0, 1]$. Let $\delta = \max_{a \geq 0} p \left(\sum_{i \in N} X_i \geq a \right)$, and suppose that it is attained at $a_0 > 0$. By Remark 1, $\sum_{i \in N} X_i > 0$ in any equilibrium X, and hence $\lim_{a \searrow 0} p \left(\sum_{i \in N} X_i \geq a \right) = p \left(\sum_{i \in N} X_i > 0 \right) = 1$. Therefore $\delta = 1$ and a_0 is the desired bound for the equilibrium sum of efforts. ■

References

